Skip to content
Menu
  • Who we are
  • Activities
    • Tutorat
    • Courses
      • Courses of 2020
      • Courses of 2021
      • Courses of 2022
      • Courses of 2024
      • Courses of 2025
    • Workshops and Reading Groups
    • Online events
      • PMOD
      • Pure Math Day 2024
    • Research seminar
      • TSMS
  • MathCamp
    • Mathcamp 6 – Call for participation
  • Articles
  • PhD Defenses
  • TIMS
  • Contact
  • Login
  • Search
  • Who we are
  • Activities
    • Tutorat
    • Courses
      • Courses of 2020
      • Courses of 2021
      • Courses of 2022
      • Courses of 2024
      • Courses of 2025
    • Workshops and Reading Groups
    • Online events
      • PMOD
      • Pure Math Day 2024
    • Research seminar
      • TSMS
  • MathCamp
    • Mathcamp 6 – Call for participation
  • Articles
  • PhD Defenses
  • TIMS
  • Contact
  • Login
MathWin

Courses of 2022

1. Algebraic Geometry (July 2022-September 2022)  

Instructor: Mohamed Aliouane

Topics discussed:

  • Affine Algebraic sets and Zarisky Topology,Hilbert Nullstallensatz
    theorem, Affine Varieties, coordinate ring, irreducibility decomposition
    theorem.
  •  Zarisky topology for algebraic case, The Hilbert Nullstallensatz theorem
    projective Case, Irreducibility.
  •  Morphism and Rational maps.
  •  Dimensions and fundamental theorems.

Main reference: Lother Gottsche, lecture notes.

 

2. Complex Geometry (July 2022-October 2022) 

Instructor: Ghani Zeghib

Notes can be found here.

 

3. Introduction to Riemannian Geometry (July 2022-October 2022) 

Instructors: Lilia Mehidi, Abderrahim Mesbah, Fayssal Saadi

Topics discussed:

  • Riemannian manifolds, affine connections, geodesics,
  • Curvature, Jacobi fields and conjugate points,
  • Lie groups, some hyperbolic geometry.

Main reference: Riemannian Geometry, by Manfredo De Carmo.

 

4. Algebraic Topology (February 2022-June 2022) 

Instructor: Abderrahmane Belkacem

A summary of the content can be found here.

Quote of the month

Geometry is the art of correct reasoning from incorrectly drawn figures.
Omar Khayyam (1048–1131)

Previous quotes and equations

Equation of the month

The Gauß–Bonnet formula for closed surfaces:

\[
\int_{M} K \, dA \;=\; 2\pi \, \chi(M)
\]

Copyright © 2026 MathWin. All Rights Reserved.

Codilight Theme by FameThemes