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Résumé

L’un des objectifs des systèmes dynamiques est de comprendre le comportement
d’une transformation. Plus précisément, si f : X → X est une application
ayant des propriétés raisonnables sur un espace X, nous voulons décrire les
orbites de f ;O+(x) = {x, fx, f2x, · · · } ou O(x) = {· · · , f−1x, x, fx, · · · } si f
est inversible. Si nous supposons que X est un espace métrique et que x, y ∈ X
sont suffisamment proches, que pouvons-nous dire des orbites de x et y? La
réponse tient en un mot : ”Chaos”. Cette notion a été introduite par Poincaré
lors de l’étude du problème des trois corps. Il s’avère que certains systèmes
sont sensibles aux conditions initiales, c’est-à-dire que même si x, y ∈ X sont
proches, le comportement de leurs orbites peut différer l’un de l’autre. Pour
décrire le comportement asymptotique d’une ortbite O+(x), on considère une

fonction continue ϕ : X → R, et la suite
(
Snϕ(x) = 1

n

n−1∑
k=0

ϕ ◦ fk(x)
)
n
. S’il

existe une mesure de probabilité µ tel que pour toute fonction continue ϕ, la
suite

(
Sn(ϕ)(x)

)
n∈N converge vers

∫
ϕ dµ, on dit que x est dans le basin B(µ)

de la mesure µ. Si la mesure de Lebesgue de B(µ) (quand ça a du sens) est
positive, on dit que la mésure µ est physique.

Dans cette thèse, nous nous intéresserons à deux classes de systèmes dy-
namiques. La première est celle des applications dilatantes (voir la section 3).
La seconde est celle des difféomorphismes hyperboliques (voir la section 4).

SoitM une variété riemannienne compacte, et f :M →M un difféomorphisme
hyperbolique de classe C1. Une telle application possède de nombreuses mesures
invariantes, mais il existe deux classes intéressantes appelées mesures physiques
et mesures SRB (voir définition 2.27 et définition 2.33). En gros, une mesure
physique nous donne le comportement asymptotique de l’orbite d’un point typ-
ique par rapport à la mesure de Lebesgue sur M . Si f est C1+α, c’est un
résultat classique que f a une mesure SRB unique qui est aussi physique (pour
un article de synthèse voir [You02]). Dans cette thèse, nous nous intéresserons
à l’existence de mesures physiques et SRB en régularité faible. Si ω : R+ → R+

est un module de continuité, on dit que f est C1+ω si f est C1 et que le module
de continuité de df est au plus un multiple de ω, c’est-à-dire qu’il existe C > 0
tel que

∥dfx − dfy∥ ≤ Cω
(
d(x, y)

)
,∀x, y ∈M.

Nous disons qu’un module ω est Dini sommable si∫ 1

0

ω(t)

t
dt < +∞. (1)

Cette condition était connue depuis les travaux d’Anosov en 1967 [Ano67a,
Ano67b], mais il ne lui avait pas donné de nom spécifique. Plus tard, en 1975,
Walters a donné une formulation équivalente de cette condition dans le cas d’un
espace symbolique, qui est une sommabilité de variation [Wal75].

Ensuite, en 1994, Gora a nommé cette condition la condition de Schmitt, et
a prouvé qu’il s’agit de la condition la plus faible qui garantit l’existence d’une

5



mesure de probabilité invariante absolument continue (ACIP) pour une appli-
cation dilatante par morceaux [Gór94a]. Peu après, en 2000, Li et Zhang ont
appelé cette condition la condition de Dini, et ont montré qu’elle est suffisante
pour obtenir la convergence de l’opérateur de transfert [LZ00]. Séparément, en
2001, Fan et Jiang ont prouvé les mêmes résultats (voir [FJ01a]), de plus, ils ont
donné une vitesse de convergence de l’opérateur de transfert défini par un po-
tentiel qui a un module de continuité de Dini ([FJ01b]) (Pour une introduction
plus classique à l’opérateur de transfert, voir [PP90, Bal00]).

Si T est une application dilatante de classe C1, avec une dérivée dont le mod-
ule satisfait la condition (1), alors T a une ACIP ergodique unique. Gora et
Schmitt ont donné un exemple explicite d’une application dilatante de classe C1

qui n’admet pas d’ACIP [GS89]. Ensuite, Quas a prouvé que, génériquement,
les applications dilatantes de classe C1 du cercle n’ont pas d’ACIP [Qua99]. Il
a donné aussi un exemple d’une application dilatante de classe C1 avec un
ACIP qui n’est pas ergodique. Peu après, Avila et Bochi ont prouvé que,
génériquement, les applications de classe C1 d’une variété riemanniene com-
pacte n’ont pas d’ACIP [AB06a].

Une question naturelle est de savoir si la condition (2) est suffisante pour
avoir une mesure SRB ou physique invariante pour les applications hyper-
boliques? La réponse est positive, et c’est l’objectif principal de cette thèse.

Une autre question ouverte intéressante est de savoir si un difféomorphisme
hyperbolique générique C1 a une mesure SRB. Un exemple d’un attracteur
hyperbolique C1 qui n’a pas de mesure SRB est donné dans 4.4.

D’autres exemples sont construits dans le cas C1 \ C1+Dini, (voir [Bow75b],
exercice 3.2 [Man12]). Plus récemment, dans [Qiu11], il est prouvé que pour un
attracteur hyperbolique générique C1, il existe une mesure d’équilibre unique
pour le potentiel géométrique, qui est physique.

Supposons maintenant que f est C1+Dini, ce qui signifie que f est C1 et que df
a un module de continuité qui satisfait la condition (2). Le point crucial de la
preuve de l’existence de mesure SRB est la régularité de la distribution instable.
Anosov a prouvé dans [Ano67b] que si f est C1+α alors Eu est hölderienne. Nous
prouverons que si f est C1+Dini alors Eu a un module de continuité qui satisfait
la condition de Dini. En utilisant ce fait, nous prouvons que f a une distorsion,
ce qui est la propriété principale pour prouver l’existence d’une mesure SRB. La
condition de Dini est également suffisante pour avoir la continuité absolue des
holonomies stables (ACH), ce qui implique que la mesure SRB est une mesure
physique.

Une autre approche pour prouver l’existence d’une mesure physique consiste
à utiliser le fait que l’application hyperbolique f :M →M possède une partition
de Markov (voir [Bow75a, BR75]). Ceci implique que f est semi-conjugué à un
sous-décalage de type fini. Plus précisément, il existe (ΣA, σ) et une application
surjective hölderienne π : ΣA → M telle que π ◦ σ = f ◦ π. Donc si nous
prenons un potentiel avec un module de continuité Dini sommable ϕ : Λ → R,
alors π ◦ σ a un module de Dini sommable. Pour obtenir un état d’équilibre
pour (ΣA, σ, π ◦ ϕ), on peut réduire le problème à un sous-décalage de type
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fini unilatéral (Σ+
A, σ, ϕ̃), (où ϕ̃ est un potentiel qui ne dépend que du futur), et

cohomologue à π◦ϕ [PP90]) qui est une application dilatante [FJ01a]. On pousse
cette mesure par π pour obtenir une mesure d’équilibre pour

(
f, ϕ
)
. Enfin, si

nous considérons le potentiel géométrique ϕ(u) = − log Juf = − log det df|Eu ,

alors ϕ(u) a un module de continuité Dini sommable à condition que f soit
C1+Dini. Dans ce cas la mesure d’équilibre µϕ(u) de ce potentiel est la mesure
physique.

Le théorème principal de cette thèse est le suivant

Theorem 0.1 ([Bou22]). Si f : M → M est un difféomorphisme hyperbolique
C1+Dini, alors le potentiel géométrique ϕ(u) = − log det df|Eu a un module de
continuité de Dini. En particulier, nous avons

i. f admet une mesure SRB invariante,

ii. les holonomies locales stables sont absolument continues,

iii. si f est transitif, alors la mesure SRB est ergodique et physique, et c’est
l’unique mesure d’équilibre pour le potentiel géométrique.

Cette thèse est organisée comme suit ;
Dans la section 2, nous donnons des notions générales sur les systèmes dy-

namiques, quelques exemples et une brève introduction à la théorie ergodique.
Dans la section 3, nous présentons quelques résultats classiques sur les ap-

plications dilatantes. Nous commençons par la preuve de l’existence d’un ACIP
pour une application dilatante C1+Dini due à [FJ01a]. Nous rappelons ensuite la
preuve de Quas sur la non-existence [Qua99]. Ensuite, en utilisant la propriété
géométrique de l’opérateur de transfert d’une application dilatante de classe
C1+α, nous prouvons la décroissance des corrélations. A la fin de la section,
nous prouvons un résultat simple et nouveau sur les applications dilatantes du
cercle qui préserve la mesure de Lebesgue.

Dans la section 4, nous rappelons quelques définitions de base sur les appli-
cations hyperboliques.

Dans la section 5, nous donnons la preuve de la régularité de la distribution
stable lorsque l’application hyperbolique en question est C1+Dini. Ceci implique
que f possède une propriété très importante appelée distorsion. Cette propriété
sera utilisée pour prouver l’existence d’une mesure SRB et la continuité absolue
des holonomies stable. Ceci implique en utilisant de l’argument de Hopf que la
mesure SRB est physique.

La section 6 est consacrée à la preuve de la décroissance des correlations
d’un difféomorphisme d’Anosov de classe C1+α. Une nouvelle approche de la
preuve a été employée, utilisant le concept de transport optimal.

Dans l’annexe, nous rappelons un théorème de couverture, nécessaire pour
prouver la continuité absolue des holonomies stables. Ensuite, nous introduisons
brièvement le concept de transport optimal.
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1 Introduction

One of the goals of dynamical systems is to understand the behavior of a trans-
formation. More precisely, if f : X → X is a map with reasonable properties
on a space X, we want to describe the orbits of f ;O+(x) = {x, fx, f2x, · · · }
or O(x) = {· · · , f−1x, x, fx, · · · } if f is invertible. If we suppose that X is a
metric space and x, y ∈ X are close enough, what can we say about the orbits
of x and y? The answer is one word ”Chaos”. This notion was introduced by
Poincaré while studying the three-body problem. It turns out that some sys-
tems are sensible to initial conditions, in other words even if x, y ∈ X are close,
the behavior of their orbits may differ from one another.

In this thesis we will be interested in two classes of dynamical systems.
The first one is expanding maps (see section 3). The second one is hyperbolic
diffeomorphisms (see section 5).

LetM be a compact Riemannian manifold, and f :M →M a C1 hyperbolic
diffeomorphism. Such a map has a lot of invariant measures, however, there are
two interesting classes called physical and SRB measures (see Definition 2.27 and
Definition 2.33). Roughly speaking, a physical measure gives us the asymptotic
behavior of the orbit of a typical point with respect to the Lebesgue measure
on M . If f is C1+α, it is a classical result that f has a unique SRB measure
which is also physical (for a survey article see [You02]). In this thesis, we will
be interested in the existence of physical and SRB measures in weak regularity.
If ω : R+ → R+ is a modulus of continuity, we say that f is C1+ω if f is C1 and
the modulus of continuity of df is at most a multiple of ω, i.e there is C > 0
such that

∥dfx − dfy∥ ≤ Cω
(
d(x, y)

)
,∀x, y ∈M.

We say that a modulus ω is Dini summable if∫ 1

0

ω(t)

t
dt < +∞. (2)

This condition was known since the work of Anosov in 1967 [Ano67a, Ano67b],
but he didn’t give it a specific name. Later in 1975, Walters gave an equiva-
lent formulation of this condition in the case of a symbolic space, which is a
summability of variation [Wal75]. Then, in 1994, Gora named this condition
Schmitt’s condition, and proved that it is the weakest condition that ensures
the existence of an absolutely continuous invariant probability measure (ACIP)
for a piecewise expanding map [Gór94a]. Soon after, in 2000, Li and Zhang
named this condition Dini condition, and showed that it is sufficient to get the
convergence of the transfer operator [LZ00]. Separately, in 2001 Fan and Jiang
proved the same results (see [FJ01a]), moreover, they gave a speed of conver-
gence of the transfer operator defined by a potential that has a Dini modulus
of continuity ([FJ01b]). (for a more classical introduction to transfer operator
see [PP90, Bal00]).

If T is a C1 expanding map, with a derivative that has a modulus that
satisfies condition (2), then T has a unique ergodic ACIP. Gora and Schmitt
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gave an explicit example of a C1 expanding map that does not admit an ACIP
[GS89]. Then, Quas proved that generically C1 expanding maps of the circle
do not have an ACIP [Qua99], and he gave an example of a C1 expanding map
with an ACIP which is not ergodic. Soon after, Avila and Bochi proved that
generically C1 maps of a smooth compact Riemannian manifold do not have an
ACIP [AB06a].

A natural question to ask is whether condition (2) is sufficient to have a SRB
and physical invariant measures for hyperbolic maps. The answer is positive,
and it is the main goal of this thesis.

Another interesting open question is whether a generic C1 hyperbolic map
has a SRB measure. An example of a C1 hyperbolic attractor that does not
have a SRB measure is given in 4.4.

Other examples are constructed in C1 \ C1+Dini case, (see [Bow75b], exer-
cise 3.2 [Man12]), and in [Qiu11], it is proven that for a generic C1 hyperbolic
attractor, there is a unique equilibrium measure for the geometric potential,
which is physical.

Now, assume that f is C1+Dini, meaning that f is C1 and df has a modu-
lus of continuity that satisfies condition (2). The crucial point in the proof is
the regularity of the unstable distribution. Anosov proved in [Ano67b] that if f
is C1+α then Eu is Hölder continuous. We will prove that if f is C1+Dini then
Eu has a modulus of continuity that satisfies Dini condition. Then using this
fact, we prove that the unstable Jacobian of f has distortion, which is the main
property to prove the existence of a SRB measure. The Dini condition is also
sufficient to have the absolute continuity of the holonomy maps (ACH), which
implies that the SRB measure is a physical measure.

Another approach to prove the existence of a physical measure, is to use the fact
that the hyperbolic map f : M → M has a Markov partition (see [Bow75a]),
which implies that f is semi-conjugated to a subshift of finite type. More pre-
cisely, there are (ΣA, σ) and a surjective Hölder map π : ΣA → M such that
π ◦σ = f ◦π, so if we take a potential with Dini summable modulus ϕ : Λ → R,
then π ◦ σ has a Dini summable modulus. To get an equilibrium state for
(ΣA, σ, π ◦ ϕ) one can reduce the problem to one-sided shift (Σ+

A, σ, ϕ̃), ( where

ϕ̃ is a potential depending only on the future, and cohomologous to π◦ϕ [PP90])
which is an expanding map, then we apply the adapted Ruelle-Perron-Frobenius
theorem [FJ01a] to get an equilibrium measure for (σ, π ◦ϕ). We push this mea-
sure by π to get an equilibrium measure for

(
f, ϕ
)
. Finally, if we consider the

geometric potential ϕ(u) = − log Juf = − log det df|Eu , then ϕ(u) has a Dini
modulus of continuity provided that f is C1+Dini, and the equilibrium measure
µϕ(u) of this potential is the physical measure. [Bow75a, BR75]

The main theorem of this thesis is

Theorem 1.1 ([Bou22]). Let f : M → M be a C1+Dini hyperbolic diffeomor-
phism, then the geometric potential ϕ(u) = − log df|Eu has a Dini modulus of
continuity. In particular we have

10



i. f admits an invariant SRB measure,

ii. the local holonomy maps are absolutely continuous,

iii. if f is transitive, then the SRB measure is ergodic and physical, and it is
the unique equilibrium measure for the geometric potential.

This thesis is organized as follows;
In section 2 we give general notions about dynamical systems, some exam-

ples, and a brief introduction to ergodic theory.
In section 3, we present some classical results about expanding maps. We

start with the proof of existence of an ACIP for a C1+textDini expanding map due
to [FJ01a]. Then we recall Quas’ proof about non-existence [Qua99]. After that,
using the geometric property of the transfer operator of a C1+α expanding map,
we prove decay of correlations. At the end of the section, we prove a simple and
new result about expanding maps of the circle that preserves Lebesgue measure.

In section 4, we recall some basic definitions of hyperbolic maps.
In section 5, we give the proof of the regularity of the stable distribution

when the hyperbolic map in question is C1+Dini. This implies that f has a very
important property called distortion. This property will be used to prove the
existence of a SRB measure and the absolute continuity of the holonomy, which
implies using the Hopf argument that the SRB measure is physical.

Section 6 is devoted to prove decay of correlations of a C1+α Anosov dif-
feomorphism. A novel approach to the proof has been employed, utilizing the
concept of optimal transport.

In the appendix, we recall a covering theorem, needed to prove the absolute
continuity of the stable holonomy. Next, we briefly introduce the concept of
optimal transport.

Keywords

Dynamical systems, Uniformly hyperbolic maps, weak regularity, SRB and phys-
ical measure, Decay of correlations, Optimal transport.
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2 Preliminaries

2.1 Introduction to ergodic theory

What is a dynamical system? Roughly speaking, it is a collection of of maps
{fi}i∈I defined on some parts of a space X with values in X, and the collection
{fi}i∈I form a pseudo-group. This definition is informal, in this dissertation,
we will be interested in discrete dynamical systems, i.e we consider a single
map f : X → X with reasonable properties, and the collection {fk}k∈Z if f is
invertible and {fk}k∈N if it is not.

Suppose that (X,B) is measurable space, and f : X → X is a measurable
map. We denote by M(X) the space of probability measures on X. Let µ ∈
M(X), then the pushforward of the measure µ by f is the measure given by

(f∗µ) (E) = µ(f−1E), ∀E ∈ B. (3)

Definition 2.1. A probability measure µ is f -invariant if f∗µ = µ. We denote
by Mf (X) the space of f -invariant probability measures.

Remarks 2.2.

• If X is a compact metric space and f is continuous, then the set Mf (X)
is a nonempty, compact and convex space.

• If f is not continuous, Mf (X) can be empty. For example, consider the
map f : [0, 1] → [0, 1], which maps 0 to 1

2 , and for x ̸= 0, f(x) = 1
3x.

• If ♯Mf (X) = 1, then f is called uniquely ergodic.

The following theorem is one of the most classical theorems in dynamical
systems.

Theorem 2.3 (Poincaré recurrence). Let (X,B, µ, f) be a dynamical system,
then for all E ∈ B, µ-a-e x ∈ E is recurrent, i.e ∀n ∈ N,∃k ≥ n, such that
fk(x) ∈ E.

Proof. Assume by contradiction that this is not the case, i.e there is E ∈ B
with µ(E) > 0, such that µ-a-e x ∈ E, there is n such that for all k ≥ n we
have fk(x) /∈ E. Denote by Bn = {x ∈ E | ∀k ≥ n, fk(x) /∈ E}, then we have
by assumption

E =
⋃
n≥0

Bn mod 0. (4)

Since µ(E) > 0, there is n1 ∈ N such that µ(Bn1
) > 0. So we have for all

k, k′ ≥ 1 and k ̸= k′, f−kn1(Bn1
) ∩ f−k′n1(Bn1

) = ∅.
Using the fact that µ is f -invariant, we have µ(f−kn1(Bn1

)) = µ(Bn1
). We

deduce that µ

( ⋃
k≥1

f−kn1(Bn1
)

)
=

+∞∑
k=1

µ(Bn1
) = +∞, which contradicts the

fact that µ is a probability measure.
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Poincaré recurrence theorem does not tell us how often we return to a set
E. A more powerful theorem that tell us how often we return is the Birkhoff
ergodic theorem. Denote by I := {E ∈ B | µ(E △ f−1E) = 0} the set of
invariant elements of B, then the Birkhoff theorem states that

Theorem 2.4 (Birkhoff ergodic theorem). Let φ ∈ L1(X,µ), then there is
φ∗ ∈ L1(X,µ) such that for µ-a.e x ∈ X we have

1

n

n−1∑
k=0

φ ◦ fk(x) → φ∗(x), (5)

moreover φ∗ = Eµ[φ | I].

Now we give some classical examples of discrete dynamical systems.

• Circle rotations: Consider the rotation Rθ : S1 → S1, defined by z 7→
eiθz. If θ ∈ Q, then Rθ is periodic , i.e there is n ∈ N such that Rnθ = Id. If
θ /∈ Q, then Rθ is uniquely ergodic, and the unique invariant probability
measure is the normalized Lebesgue measure of S1. To unique ergodicity,
it is enough to prove that for any invariant measure µ and a small interval
Iϵ0 , we have µ(Iϵ0) = |Iϵ0 |.

• South-North dynamic: Consider the map fS,N : S1 → S1 given by z 7→
−3z−i
iz−3 . Notice that any invariant measure must be supported on −i and i.
Moreover, if f : S1 → S1 is a C1 orientation preserving diffeomorphism,
with exactly two fixed point, and the derivative of f at each fixed point has
absolute value different than 1, then f is topologically conjugate to fS,N ,
i.e there is a homeomorphism h : S1 → S1, such that f = h ◦ fS,N ◦ h−1.

• Parabolic homeomorphism of S1: A homeomorphism of S1 preserving
the orientation and with a unique fixed point, is said to be parabolic.

• Action of PSL2(R) on ∂H2: Consider the group PSL2(R) = SL2(R)/⟨Id,−Id⟩,
where H2 is the upper half plane, and SL2(R) are two by two matri-
ces with determinant 1. This group acts on H2 by homography, i.e for(
a b
c d

)
∈ PSL2(R), z ∈ H2, the action is given by

(
a b
c d

)
· z = az+b

cz+d .

Let γ ∈ PSL2(R). If |tr(γ)| > 2, then the action of γ on ∂H2 (the bound-
ary of H2 which can be identified with S1) is topologically conjugate to
fS,N , and in this case γ is called hyperbolic. If |tr(γ)| < 2, then the action
on ∂H2 is conjugate to a rotation, and γ is called elliptic. If |tr(γ)| = 2,
then the action on ∂H2 is parabolic.

• Translation on the n-dim torus: Consider τθ : Tn → Tn, x 7→ x + θ,
where θ = (θ1, θ2, · · · , θn) ∈ Tn. Then τθ is uniquely ergodic if and only

if p0 +
n∑
k=1

pkθk ̸= 0 for all (pk) ∈ Qn+1 \ {0}.

13



• Toral automorphisms: Consider the linear action of SL2(Z) on R2. This
action preserves the lattice Z2, so the action passes to R2/Z2 = T2. As in
the case of PSL2(R) we can classify elements of SL2(Z) into three types
depending on the trace. If γ ∈ SL2(Z) then the characteristic polynomial
has the form X2 − tr(γ)X + 1, so δγ = tr(γ)2 − 4.

If |tr(γ)| > 2, then γ : T2 → T2 is an Anosov diffeomorphism (see Defini-
tion 4.1).

If |tr(γ)| < 2, then γ has two conjugate eigenvalues in S1, and since we

have P

(
λk

λ−k

)
P−1 =

(
ak bk
ck dk

)
∈ SL2(Z), so there is some M > 0

such that for all k, we have |ak|, |bk|, |ck|, |dk| ≤ M, which implies that γ
has finite order.

If |tr(γ)| = 2, then γ has 1 as eigenvalue, γ fixes the direction of this
eigenvalue, and since γ is continuous and different from the identity, this
direction is a closed loop in T2.

In fact for each homeomorphism of T2, there is a unique γ ∈ SL2(Z), such
that f is homotopic to γ, so the setMCG(T2) := Homeo+(T2)/Homotopy
can be identified with SL2(Z). This set is called the mapping class group
of T2. For a closed surface S of higher genus, there is a similar classification
of MCG(S) due to Thurston.

2.1.1 Entropy

The concept of entropy was introduced in 1958 by Kolmogorov, it is an isomor-
phism invariant, which roughly speaking measures the complexity of a system.

To define the entropy of a measure preserving transformation f of (X,B, µ),
we introduce the entropy of a finite partition of X, then entropy of f with
respect to a finite partition.

Definition 2.5. A partition of X is a collection of elements {Pi}i∈I of B such
that

⋃
i∈I

Pi = X and µ(Pi ∩ Pj) = 0, for i ̸= j.

Definition 2.6. Let P1,P2 two partitions of X. We say that P1 is a refinement
of P2 and write P1 ≤ P2, if each element of P2 is a union of elements of P1.
The joint partition of P1 and P2 is the partition

P1 ∨ P2 = {P1 ∩ P2 | P1 ∈ P1, P2 ∈ P2} .

For n ∈ N, we denote by f−nP1 the partition {f−nP | P ∈ P1}.

Definition 2.7 (Entropy of a partition). Let P be a finite partition of X. The
entropy of the partition P is the real number

Hµ(P) = −
∑
P∈P

µ(P ) logµ(P ), (6)

14



with the convention 0 log 0 = 0. If A is another partition, then the entropy of
P knowing A (or conditional entropy) is defined as

H(P|A) = −
∑

P∈P,A∈A
µ(P |A) logµ(P |A), (7)

where µ(P |A) = µ(P∩A)
µ(A) is the conditional probability of P knowing A.

Using the convexity of ϕ : [0,∞) → R, x 7→ x log x, we have the following
properties of the entropy of a partition.

Proposition 2.8. Let P,A, C be three partitions of (X,B, µ) then we have

• H(P) ≥ 0,

• H(A ∨ P) ≤ H(A) +H(P),

• H(f−1P) = H(P),

• If A ≤ P then H(A) ≤ H(P) and H(A|C) ≤ H(P|C).

For a proof and more properties see theorem 4.3 in [Wal00] or [Cou16].
The definition of entropy of a partition does not involve the map f.We define

entropy of f with respect to a partition.

Definition 2.9. Let P be a partition, then the entropy of f with respect to this
partition is given by

hµ(f,P) = lim
n→∞

1

n
H(∨n−1

i=0 f
−iP). (8)

This limit exists, because the sequence (un)n defined by un = H(∨n−1
i=0 f

−iP)
satisfies for all k, l ∈ N, uk+l ≤ uk + ul. Now we give the definition of entropy.

Definition 2.10. The entropy of f with respect to the invariant measure µ is

hµ(f) = sup
P
hµ(f,P). (9)

Proposition 2.11. The entropy is an isomorphism invariant.

Examples 2.12.

• Let X = Σ2 := {0, 1}Z, with the product topology, and let σ be the shift
map, and µ the ( 12 ,

1
2 ) Bernoulli measure, then hµ(σ) = log 2. For Σ3 and

the shift map in this space the entropy is log 3, so by the previous proposi-
tion there is no measurable isomorphism between Σ2 equipped with ( 12 ,

1
2 )

Bernoulli measure, and Σ3 equipped with ( 13 ,
1
3 ,

1
3 ) Bernoulli measure.

• If X is a metric space, and f is an isometry, then for any f invariant
measure µ, we have hµ(f) = 0.

• The entropy of the doubling map on the circle has entropy log 2 with respect
to the Lebesgue measure.
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Topological entropy

Let (X, d) be a compact metric space, and f : X → X be a continuous map.
For each n ∈ N, let dn : X ×X → R be given by dn(x, y) = max

0≤k<n
d(fkx, fky).

It is easy to check that dn is well defined, and it is a distance on X. We denote
by Bn(x, r) the ball of center x and radius r with respect to the distance dn.
We call Bn(x, r) a dynamical ball, and dn a dynamical distance. Notice that if
n ≤ m then dm ≤ dn, and if we know the orbit of length n of a point x, then
∀y ∈ Bn(x, r), the orbit of length n of y is close to the orbit of x. We say that
a finite set C is (ϵ0, n)-covering if

X =
⋃
x∈C

Bn(x, ϵ0),

and a finite set S is (ϵ0, n)-separating if for all x, y ∈ S with x ̸= y, we have

Bn(x, ϵ0) ∩Bn(y, ϵ0) = ∅.

Consider the following numbers

q(n, ϵ0) = inf ♯C; p(n, ϵ0) = sup ♯S, (10)

where the infimum is taken over (ϵ0, n)-covering sets, and the supremum is taken
over (ϵ0, n)-separating sets. These two numbers measure the complexity of f
and they are related by the inequalities

q(n, 2ϵ0) ≤ p(n, ϵ0) ≤ q(n,
ϵ0
2
).

Proposition 2.13. The limit lim
n→+∞

1
n log q(n, ϵ0) exist.

Definition 2.14. We call the limit h(f) = lim
n→+∞

1
n log q(n, ϵ) the topological

entropy of f.

Remarks 2.15.

• The topological entropy h(f) depends only on the topology induced by d.

• If f is conjugated to g : Y → Y by a homeomorphism then h(f) = h(g).

• We will define later a more general notion, which is the pressure P (ϕ)
with respect to a potential ϕ. In this case h(f) = P (0).

Examples 2.16.

• If f : X → X is an isometry, then ∀n ∈ N∗, dn = d, which implies that
h(f) = 0.

• If f : S1 → S1, z 7→ z2 then we have dn = d
2n , which gives us h(f) = log 2.
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• For any expanding map g of the circle of degree d, g is conjugated to the
map z 7→ zd, so we have h(g) = log d.

Let (X, d, µ) be a metric space with a probability measure, and f : X → X
a continuous map that preserves µ, then we have hµ(f) ≤ h(f). In fact we have

Theorem 2.17 (Variational principle). h(f) = sup
µ
hµ(f), where the supremum

is taken over the space of invariant probability measures of f.

If an invariant measure µ satisfies hµ(f) = h(f), then we call µ a measure of
maximal entropy (MME for abbreviation). For example the Lebesgue measure
on S1 is a MME for the doubling map. In general the MME does not always
exist. A sufficient condition for the existence is upper-semi continuity of the
entropy function, i.e the map h.(f) : Mf (X) → R, µ 7→ hµ(f) is upper-semi
continuous.

2.1.2 Ergodicity

Let (X,B, f, µ) be a dynamical system. A natural question to ask is whether
we can decompose X into a disjoint union of sets in B with positive measure.
The notion of ergodicity tell us that we can’t do this, more precisely

Definition 2.18. A probability measure µ is ergodic if for all E ∈ B satisfying
f−1E = E, we have µ(E) = 0 or 1.

Examples 2.19.

• Any irrational rotation of the circle is ergodic with respect to the Lebesgue
measure.

• A toral translation is ergodic with respect to the Lebesgue measure if and
only if it is transitive.

• The geodesic flow in negatively curved closed surface is ergodic with respect
to the normalized Liouville measure.

• If µ is a unique equilibrium measure for a potential ϕ, then µ is ergodic.

Proposition 2.20 (Equivalent conditions for ergodicity). A dynamical system
(X, f,B, µ) is ergodic if and only if

• For all ϕ ∈ L1, if ϕ ◦ f = ϕ, then ϕ is constant µ-a.e,

• For all ϕ ∈ L1, and µ-a.e x, the limit 1
n

n−1∑
k=0

ϕ ◦ fk(x) exists and is inde-

pendent of x.

17



2.1.3 Subshift of finite type

The subshift of finite type is one of the fundamental dynamical systems that
is well understood from ergodic point of view, we will see later that uniformly
expanding maps and Axiom A attractors are factors of a subshift of finite type.

Let A be the set (called the alphabet)

A = {1, 2, · · · , n}. (11)

Denote by Σn (resp Σ+
n ) the set AZ (resp AN) then define the transformation

σ : Σn → Σn which associates to (xn)n∈Z the sequence (yn)n∈Z, where for all
n, yn+1 = xn. This transformation is continuous with respect to the product
topology, it is called the shift map. Consider the distance d on Σn given by

d ((xn)n, (x
′
n)n) =

(
1

2

) inf
k∈Z

{|k| | xk ̸=x′
k}

, (12)

this distance is an ultrametric distance, and it induces the product topology on
Σn. In the case of Σ+

n , this map is expanding with respect to this distance.
Let A ∈ Mn(R) be a square matrix with entries Aij ∈ {0, 1}, and each line

or column contains a 1, then the set

σA = {(· · · , x−1, x0, x1, · · · ) ∈ Σn | Axixi+1
= 1} (13)

is closed and σ invariant, we say that (ΣA, σ|A) is a subshift of finite type.

2.2 Thermodynamical formalism and equilibrium states

Let f : X → X be a continuous map of a compact metric space, and ϕ : X → R
a map (often called potential).

Consider the two following numbers that depend on f, ϕ, ϵ and n ≥ 1

Qn(f, ϕ, ϵ) = inf

{∑
x∈A

e(Snf)(x) : A is a (n, ϵ)-spanning set for X

}
,

Pn(f, ϕ, ϵ) = sup

{∑
x∈A

e(Snf)(x) : A is a (n, ϵ)-separated set for X

}
,

where (Snf)(x) =
n−1∑
k=0

ϕ ◦ fk(x). If ϕ is continuous, then the limit

lim
ϵ→0

lim sup
n→∞

1

n
log
(
Qn(f, ϕ, ϵ)

)
exists, is finite and is equal to

lim
ϵ→0

lim sup
n→∞

1

n
log
(
Pn(f, ϕ, ϵ)

)
.
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The limit is called the topological pressure of f with respect to the potential ϕ,
we denote it by P (ϕ).

Denote by mathcalMf (X) the space of f−invariant probabilities measures
on X, and let µ ∈ Mf (X). The pressure with respect to this measure is defined
by:

Pµ(ϕ) = hµ(f) +

∫
X

ϕ dµ,

The variational principle (see theorem 9.10 in [Wal00]) gives the following for-
mula:

P (ϕ) = sup

{
hµ(f) +

∫
ϕ dµ : µ ∈ Mf (X)

}
.

If a measure µ ∈ Mf (X) satisfies Pµ(ϕ) = P (ϕ), then µ is called an equilibrium
measure for the potential ϕ.

Examples 2.21.

• If ϕ = 0, then the pressure equals to the topological entropy, and an equi-
librium measure is a MME.

• If f :M →M is a C1+α expanding map (see 3.1), and ϕu = − log Jac(f) :=
− log |det df |, then there is a unique equilibrium measure µg, which is
equivalent to the Lebesgue measure. In this case the topological pressure is
0, so we have hµg

(f) =
∫
log Jac(f) dLeb.

The proof of the second example is a corollary of Ruelle’s theorem and the
fact that an expanding map is a factor of a subshift of finite type.

Consider ΣA a topologically mixing subshift of finite type, and ϕ ∈ Cα(ΣA)
a Hölder potential (or more generally a potential with summable variations),
and let Lϕ : Cα(ΣA) → Cα(ΣA), given by

Lϕ(ψ)(x) =
∑

y∈σ−1x

eϕ(y)ψ(y), ∀x ∈ ΣA.

This operator is a linear operator, and called a transfer (or Ruelle) operator. In
the following theorem we denote this operator by L, and its adjoint operator by
L∗.

Theorem 2.22 (Ruelle theorem). There are λ > 0, h ∈ Cα(ΣA) with h > 0
and a measure ν on ΣA for which we have

1. Lh = λh and L∗ν = λν,

2. ν(h) = 1, and the measure µ = hν is invariant by the shift map,

3. The probability measure µ satisfies Gibbs property, in other words, for all
r > 0, there is C = C(r) such that ∀n ∈ N we have

C−1 ≤
µ
(
Bn(x, r)

)
e−nP+Snϕ(x)

≤ C, (14)
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where P is the topological pressure with respect to ϕ, and

Snϕ(x) =

n−1∑
k=0

ϕ(fkx),

4. lim
n→∞

∥λ−mLmψ − ν(ψ)h∥Cα = 0,∀ψ ∈ Cα(ΣA),

5. λ is a simple eigenvalue for L, and it is equal to its spectral radius.

For a proof see theorem 1.7 in [Bow75a], and for further spectral properties
(for instance spectral gap) see [Bal00].

2.3 Modulus of continuity

Definition 2.23. A modulus of continuity is a continuous, increasing and con-
cave map ω : R+ → R+, such that ω(0) = 0.

We say that the modulus ω is Dini summable if∫ 1

0

ω(t)

t
dt < +∞. (15)

For instance, for any α ∈ (0, 1), the map ω(t) = tα is a modulus of continuity
which is Dini summable.

The following proposition gives an equivalent condition on a modulus ω to
be Dini summable.

Proposition 2.24. The following conditions are equivalent:

• ω is Dini summable.

• ∀c ∈ (0, 1) and ∀t ≥ 0,
+∞∑
k=0

ω(ckt) < +∞,

• ∃c ∈ (0, 1) and ∃t > 0,
+∞∑
k=0

ω(ckt) < +∞.

Proof. Since ω is concave, the map t 7→ ω(t)
t is decreasing, hence we have the

following inequalities for all n and small t:

n−1∑
k=0

(ck − ck+1)
ω(ckt)

ckt
≤
∫ t

cnt

ω(x)

x
dx ≤

n−1∑
k=0

(ck − ck+1)
ω(ck+1t)

ck+1t
. (16)

We deduce the proposition from these inequalities.

Let ω be a Dini summable modulus, and for c ∈ (0, 1) define

ω̃c(t) =

+∞∑
k=0

ω(ckt),∀t ≥ 0. (17)

It follows immediately that ω̃c is a modulus of continuity.
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Remark 2.25. The Dini summability condition is the weakest known regularity
to have a nice invariant space for the transfer operator (see [FJ01a]), it implies
also bounded distortion which will be crucial to prove existence of ACIP (resp.
SRB) measure for expanding maps (resp. hyperbolic maps).

Examples:

• For α ∈ (0, 1], ω(t) = tα is Dini summable.

• The modulus ωβ log(t) =
1(

log( 1
t )
)β is Dini summable if and only if β > 1.

In this example ω is defined only for small t, then we extend it by an affine
map.

Definition 2.26. Let X,Y be two metric spaces, and ω a modulus of continuity,
we say that a map f : X → Y is C0+ω if there is a C > 0 such that:

d
(
f(x), f(y)

)
≤ Cω

(
d(x, y)

)
, ∀x, y ∈ X. (18)

• If ω(t) = t, then C0+ω is the set of Lipschitz maps.

• If ω(t) = tα, where 0 < α < 1, then C0+ω is the set of Hölder maps with
exponent α.

Given a continuous map g : M → M of a compact manifold, a natural way
to define the modulus of continuity of g would be to take:

ω̃g(t) = sup
x,y∈M
d(x,y)≤t

d(gx, gy), (19)

but ω̃g is not concave. To get concavity, we take:

ωg = inf{h | h continuous, concave and increasing and h ≥ ω̃g}. (20)

It is clear that ωg is a modulus of continuity, and it satisfies the inequality (18)
with constant C = 1.

For equivalent formulation of the Dini summability condition see [Gór94b].

2.4 SRB and Physical measures

There is a confusion in the literature about the definition of SRB and physical
measure, in this thesis, we follow the convention used by [You02] to define SRB
and physical measures. An example of a physical measure that is not SRB was
given by Bowen (see Example 2.35).

Let M be a compact Riemannian manifold, and denote by λ its normalized
volume measure. Let f : U →M be a C1 diffeomorphism, where U in an open
subset of M , and µ be an invariant probability measure of f .

First, we begin by defining whats a physical measure. Consider the set

B(µ) =

{
x ∈M | 1

n

n−1∑
k=0

δfkx −−−−−→
n→+∞

µ

}
, (21)

where the convergence is in the weak* topology.
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Definition 2.27. The measure µ is called physical if λ
(
B(µ)

)
> 0.

Remark 2.28. If the measure µ is absolutely continuous with respect to λ and
ergodic, then using Birkhoff ergodic theorem, µ is physical.

Example 2.29. f : S1 → S1, z 7→ z2 preserves the Lebesgue measure λ, and
since λ is ergodic, it is a physical measure for f .

Example 2.30. If f : M → M is a C1 map, then any Dirac measure δx of
an attracting fixed point x of f (i.e ∥Dxfv∥ < ∥v∥,∀v ∈ TxM) is a physical
measure.

Now, to define an SRB measure, we need to introduce the multiplicative
ergodic theorem and Lyapunov exponents.

Theorem 2.31 ([Ose68]). Let f : U → M a C1 diffeomorphism preserving
a probability measure µ. Then, for µ almost every x ∈ M, there exist a real
numbers

λ1(x) < · · · < λk(x)(x), (22)

and a filtration of subspaces

{0} = E0(x) ⊂ E1(x) ⊂ · · · ⊂ Ek(x)(x) = TxM, (23)

such that for all v ∈ Ei(x) \ Ei−1(x), i = 1, · · · k(x),

lim
n→∞

1

n
∥dfnx (v)∥ = λi(x). (24)

Remark 2.32. If f is ergodic then λi are constant, and called Lyapunov expo-
nents of f . For a proof see [Fil19] for example.

Assume that f has non-zero Lyapunov exponents, then by Pesin theory,
([Pes77]) there exist local unstable (corresponding to positive Lyapunov expo-
nents) and local stable manifolds.

Definition 2.33. The measure µ is called a SRB measure, if it has absolutely
continuous conditionals along local unstable leaves.

Remarks 2.34.

• If f has only positive Lyapunov exponents, then a SRB measure is equiv-
alent to the Lebesgue measure.

• For C1+α diffeomorphism, Ruelle gave a upper bound for the entropy of a
measure µ, and Pesin proved that equality holds if and only if µ is a SRB
measure (see Theorem 2 in [You02]).

• We will see later that C1+α expanding maps have an SRB (absolutely
continuous with respect to Lebesgue) which is also a physical measure.
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O1 O O2

Example 2.35. The Bowen example: consider the vector field on R2 given by
the picture. Denote by U the connected open set bounded by the lines l1 and l2.
Consider the time 1 map f of this flow, then the orbit of any point x ∈ U \ {O}

will converge to the boundary, furthermore, 1
n

n−1∑
k=0

fk∗ δx converges in the weak*

topology to 1
2δO1 +

1
2δO2 . Clearly the latter measure is not SRB, but it is physical

since its basin contains U \ {O}.
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3 Uniformly expanding maps

Definition 3.1. Let f : M → M be a C1 map of a compact Riemannian
manifold M. We say that f is expanding, if f is a local diffeomorphism, and
there exist C > 0 and λ ∈ (0, 1) such that for all n ∈ N, x ∈M and v ∈ TxM,

∥dfnx (v)∥ ≥ Cλ−n∥v∥. (25)

An alternative definition which work in metric spaces, is that f asymptoti-
cally uniformly expand the distance.

Remark 3.2.

• The notion of expanding map does not depend on the Riemannian metric
on M , i.e if f is expanding for a Riemannian metric, then it is expanding
for any equivalent Riemannian metric.

• We can choose a Riemannian metric such that C = 1, this metric is called
a Lyapunov metric.

• Notice that not all manifolds have expanding maps, for instance, S2 does
not have an expanding map, because otherwise, the expanding map would
be a non trivial covering map, which is impossible because S2 is simply
connected.

• It is proved by [Gro81] that if the manifold M admits an expanding map,
then M is homeomorphic to an infra-nil-manifold.

Examples 3.3. Some of the following examples have singularities, or the ex-
panding map is defined on a metric space.

• Let Σ+ = {0, 1}N, σ : Σ+ → Σ+ be the shift map defined by

σ
(
(x0, x1, · · · )

)
= (x1, x2, · · · ),

and the distance d given by d
(
(xn)n, (yn)n

)
= (1/2)max{n | xn=yn}. In this

case we have

d
(
σ
(
(xn)n

)
, σ
(
(yn)n

))
≥ 2d

(
(xn)n, (yn)n

)
,

so the shift map is expanding with respect to the defined distance.

• For k ∈ N\{0, 1}, the map : Ek : S1 → S1 is expanding. Any C1−expanding
map f of the circle is topologically conjugated to Edegree(f).

• The Gauss map given by

G : [0, 1] −→ [0, 1]

x 7−→

{
1
x −

[
1
x

]
if x ̸= 0,

0 otherwise.
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G is not uniformly expanding, and it has points of discontinuities, but
it is locally expanding, and preserves an ACIP, it has the Gibbs-Markov
structure (see [Alv20]). For x ∈ [0, 1], let G−1(x) = {x1, x2, · · · } such
that 1

1+n < xn ≤ 1
n , using the formula of G we find that xn = 1

x+n . Let

h ∈ L1[0, 1], and consider the transfer operator associated to G given by

LG[h](x) =
∑
n≥1

h(xn)

|G′(xn)|
=
∑
n≥1

h( 1
x+n )

(x+ n)2
. (26)

We will prove later that G has an ACIP if and only if the equation LG[h] =
h has a solution in L1. It turns out that ρ(x) = 1

ln(2)
1

(1+x) is the unique

fixed point for LG.

3.1 Existence of ACIP for expanding maps

Existence of absolutely continuous invariant measure for C1+α expanding maps
was originally proved by [KS69]. In this subsection, we present briefly the
theorem and some of its consequences.

Let f :M →M be a C1+α expanding map. To prove that f has an ACIP, we
introduce an operator called the transfer operator. Denote by λ the normalised
volume on M. Since f is C1, the measure f∗λ is absolutely continuous with
respect to λ, and a candidate of an ACIP is to consider a weak* limit µ of the
sequence

1

n

n−1∑
k=0

fk∗ λ, (27)

but µ is not necessarily absolutely continuous. We can in fact compute the
Radon-Nikodym derivative of f∗λ with respect to λ. Indeed, since f is a covering
map, and a local diffeomorphism, we have for a small open ball B

f∗λ(B) = λ(f−1B) =
∑
i

λ(Ui), (28)

where the Ui are the disjoint connected subsets sent to B by f. Since fi : B → Ui
is a diffeomorphism, we apply the change of variable formula and get that

λ(Ui) =

∫
B

Jacf−1dλ =

∫
B

1

Jac f ◦ f−1
i

dλ, (29)

hence we have

f∗λ(B) =
∑
i

λ(Ui) =
∑
i

∫
B

1

Jac f ◦ f−1
i

dλ,

which gives the required Radon-Nikodym derivative. Using the same computa-
tion it is easy to prove for h ∈ L1(M) that for λ-a.e x,

df∗
(
hλ)

dλ
(x) =

∑
y∈f−1(x)

h(y)

Jac f(y)
.
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Definition 3.4. The transfer operator associated to f is the map Lf defined by

Lf : L1(M) → L1(M)

h 7→
∑
i

h

Jac f
◦ f−1

i .

We proved that

Proposition 3.5. A probability measure of the form hλ is f invariant if and
only if Lf (h) = h.

In other words, to determine an ACIP for f, we have to determine a fixed
point of the transfer operator Lf (this operator was called Perron-Frobenius-
Ruelle operator). For further properties of this operator, see [Bal00, PP90].

A folklore theorem is

Theorem 3.6. If f :M →M is C1+α expanding map, then Lf admits a unique
invariant positive L1(M) function ρf . Furthermore, ρf is Cr−1+α if f is Cr+α,
and Lnf (1) converges exponentially to ρf in the Cα topology.

One of the consequences of the existence of an ACIP is rigidity of conjugacy.

Corollary 3.7 (Rigidity). Let f, g be two Cr (r ≥ 2) expanding maps of the
circle, which are conjugated by a homeomorphism h that is absolutely continuous,
then h is Cr.

Proof. Using the previous theorem, f preserves a measure µ = ρλ, where λ is the
Lebesgue measure and ρ is a Cr−1 density. Consider the map φ : S1 → S1, x 7→
µ
(
[0, x]

)
. The map φ is well defined, and is a Cr diffeomorphism of S1, and it

conjugates f to an expanding map that preserves the Lebesgue measure. Indeed,
put f0 = φ ◦ f ◦ φ−1, then this map is a local diffeomorphism, and it preserves
the Lebesgue measure (because φ−1

∗ λ = µ and f∗µ = µ), in particular, we have
for almost every x ∈ S1, Lf0 [1](x) = 1, which implies that f0 is expanding.
Using this argument, we may assume without loss of generality, that f and
g preserve the Lebesgue measure, in this case, h also preserves the Lebesgue
measure (because h∗λ is g invariant, and g is ergodic with respect to λ), so h is
an isometry, which finishes the proof.

Remark 3.8. In [SS85], Shub and Sullivan proved that this corollary is true if
we assume only that h is an absolutely continuous measurable bijection.

Corollary 3.9 (Decay of correlations). For a C1+α expanding map of a compact
Riemannian manifold M , the unique ACIP µ = ρλ is mixing. In fact we have
exponential decay of correlations, i.e there are C, τ > 0 such that for all φ ∈
Cα(M) and ψ ∈ L1(S1) we have for all n ∈ N

Corµ(φ,ψ ◦ fn) := 1

∥φ∥Cα∥ψ∥1

∣∣∣∣∫ φ · (ψ ◦ fn)dµ−
∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Ce−τn.

(30)
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Proof. Let φ ∈ Cα(M), ψ ∈ L1, we may assume without loss of generality that
∥φ∥Cα = ∥ψ∥1 = 1. We have

Corµ(φ,ψ ◦ fn) :=
∣∣∣∣∫ φ · (ψ ◦ fn)dµ−

∫
φdµ

∫
ψdµ

∣∣∣∣
=

∣∣∣∣∫ Lnf [ρfφ] · ψdLeb−
∫
φdµ

∫
ψdµ

∣∣∣∣ ,
and since Ln(ρfφ) goes to

(∫
ρfφ dλ

)
ρ exponentially fast, we have decay of

correlations, in particular the measure µ is mixing.

Remark 3.10. Another approach to prove decay of correlations is to use optimal
transport, this approach was done in [KLS15].

3.2 Existence in weaker regularity

In [FJ01a], Fan and Jiang, proved that if f : M → M is a C1+Dini expanding
map of a compact Riemannian manifold, i.e f is C1 and df has a modulus of
continuity ω that is Dini summable, then f admits an ACIP. We stress that
C1+Dini map is not necessarily C1+α.

Theorem 3.11 (Fan and Jiang). Let f : M → M be a C1+ω expanding map,
where ω is a modulus of continuity that satisfies Dini condition, assume also
that f is topologically mixing, then f has a unique ergodic ACIP µ = ρλ and ρ
has ω̃ as a modulus of continuity.

To prove this theorem, we give a suitable space of functionHω̃
K,s that depends

on the modulus ω and two constants K, s ∈ R, which is invariant by the transfer
operator associated to f. Then using some properties of functions of Hω̃

K,s, we
prove that Lf has a fixed point.

For a modulus ω let Hω be the space of real valued continuous functions
over M which have ω as a modulus of continuity.

In the following lemmas, let a > 0, D > 1 such that whenever we have
d(x, y) ≤ a, then d(fx, fy) ≥ Dd(x, y). Then, consider a K > 0 such that for all

x, y ∈ M with d(x, y) ≤ a we have |Jacf(x)|
|Jacf(y)| ≤ expKω

(
d(x, y)

)
. Now, for s > 0

define the set Hω̃
K,s by

Hω̃
K,s =

{
ϕ ∈ Hω̃ | ∀x, y ∈M,d(x, y) ≤ a : ϕ(x) ≥ s,

ϕ(x)

ϕ(y)
≤ eKω̃

(
d(x,y)

)}
,

(31)

and let L =
(
sup
x∈M

|Jacf(x)|
)
Lf , then we have

Lemma 3.12. The set Hω̃
K,s is L-invariant, in other words LHω̃

K,s ⊂ Hω̃
K,s.
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Proof. Consider ϕ ∈ Hω̃
K,s, x, y ∈M with d(x, y) ≤ a. Let T−1(x) = {x1, · · · , xk}

and T−1(y) = {y1, · · · , yk} such that d(xi, yi) ≤ λd(x, y). Then we have

Lf [ϕ](x) =
k∑
i=1

1

|Jacf(xi)|
ϕ(xi)

≤
k∑
i=1

eKω
(
d(xi,yi)

)
|Jacf(yi|)

ϕ(yi)e
Kω̃(d(xi,yi))

≤ Lf [ϕ](y)eKω
(
λd(x,y)

)
+Kω̃

(
λd(x,y)

)
,

and since ω̃(t) =
∑
k≥0

ω(λkt),

L[ϕ](x) ≤ Lf [ϕ](y)eKω̃
(
d(x,y)

)
.

We deduce that L[ϕ] has ω̃ as a modulus of continuity. Also, by definition of L,
we have L[ϕ] ≥ s, which proves the lemma.

We need two more technical lemmas to prove the theorem,

Lemma 3.13. Let (hn) be a uniformly bounded sequence in Hω̃
K,s, then it has

a subsequence that converges uniformly to some h ∈ Hω̃
K,s.

Proof. Since hn are equicontinuous, we apply Ascoli theorem to find a subse-
quence that converges uniformly to a continuous map h. We have also for all
n ∈ N

hn(x) ≥ s,
hn(x)

hn(y)
≤ eKω̃

(
(d(x,y)

)
,

which implies that h ∈ Hω̃
K,s.

Lemma 3.14. There exist A,B > 0 such that for all ϕ ∈ Hω̃
K,s we have

Bϕ ≤ L[ϕ] ≤ Aϕ. (32)

Proof. Let ϕ ∈ Hω̃
K,s and x ∈M then we have

Lf [ϕ](x) =
∑

y∈f−1x

ϕ(y)

|Jacf(y)|
=
( ∑
y∈f−1x

ϕ(y)

ϕ(x)

1

|Jacf(y)|

)
· ϕ(x),

which implies that

Lf [ϕ](x) ≥
ks

∥ϕ∥∞ sup
y∈M

|Jacf(y)|
ϕ(x),
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and since ∥ϕ∥∞ ≤ s · eKω̃
(
diam(M)

)
we get the first inequality. For the other

inequality we use the fact that

Lf [ϕ](x) =
( ∑
y∈f−1x

ϕ(y)

ϕ(x)

1

|Jacf(y)|

)
· ϕ(x) ≤ eKω̃

(
diam(M)

)
k

min |Jacf |
ϕ(x).

Proof of theorem 3.11. Let b = sup{t > 0 | ∃ϕ ∈ Hω̃
K,s such that Lϕ ≥ tϕ}. It is

clear using the previous lemma that b ∈ (0,∞). Let (bn)n an increasing sequence
that converges to b, and let (ϕn)n a sequence in Hω̃

K,s such that Lϕn ≥ bnϕn.

Using lemma 3.13 we can find ρ ∈ Hω̃
K,s such that Lρ ≥ bρ. If we prove that

we have equality, ρ will be a fixed point for Lf . Assume that we don’t have
equality, then there is some y ∈ M such that Lρ(y) > bρ(y), and by continuity
we can find a neighborhood U of y such that

Lρ(x) > bρ(x), ∀x ∈ U .

Since f is mixing, there is n ∈ N∗ such that fn(U) = M, so we have Ln(Lρ −
bρ) > 0, which gives by linearity of L that

L(Lnρ) > bLnρ,

so we can choose some c > b such that L(Lnρ) ≥ cLnρ, which is a contradiction.
Hence Lf [ρ] = ρ.

Remark 3.15. To prove uniqueness of the ACIP µ of f, it is enough to prove
that µ is ergodic. Note that being expanding and topologically mixing does not
imply that µ is ergodic, Quas [Qua96] gave an example of a C1 expanding map
of the circle which is not ergodic. In the proof of existence we used a crucial
property which is called distortion. The distortion also implies uniqueness of
the ACIP in dimension 1.

Lemma 3.16. Let f : S1 → S1 be a C1 expanding map of the circle preserving
an absolutely continuous probability µ, and assume that f ′ has distortion, i.e
∀ϵ > 0,∃Cϵ > 1 with Cϵ goes to 0 when ϵ goes to 0, such that ∀x ∈ S1, n ∈ N
and y ∈ Bn(x, ϵ) we have

C−1
ϵ ≤

∣∣∣∣∣fn
′
(x)

fn′(y)

∣∣∣∣∣ ≤ Cϵ, (33)

then the measure µ is ergodic.

Proof. We can assume without loss of generality that µ is the Lebesgue measure.
To prove ergodicity of f, it is enough to prove that for each measurable set A
of positive measure, and ϵ > 0, there is n ∈ N such that µ(fnA) > 1− ϵ. Let A
be a set of positive measure, and fix ϵ > 0, then we can find a small interval I
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and n ∈ N such that µ(A∩I)
µ(I) ≥ 1− ϵ2, and 1 > fn(I) > 1− ϵ2. Using distortion

we have for any a ∈ A ∩ I

C−1
ϵ µ(A ∩ I)|fn′(a)| ≤ µ

(
fn(A ∩ I)

)
≤ Cϵµ(A ∩ I)|fn′(a)|,

and
C−1
ϵ µ(I)|fn′(a)| ≤ µ

(
fn(I)

)
≤ Cϵµ(I)|fn′(a)|,

so we deduce that
µ
(
fn(A ∩ I)

)
µ(fnI)

≥ (1− ϵ)2C−2
ϵ .

Since Cϵ is arbitrary close to 1 when ϵ is arbitrary small, we deduce that
µ
(
fn(A)

)
≥ 1− ϵ, which finishes the proof of ergodicity.

Remark 3.17. If f is a C1+Dini expanding map of the circle, then f ′ satisfies
(33), in particular f has a unique ACIP.

3.3 A new proof of Decay of correlations

In this subsection, we give a new approach to prove exponential decay of corre-
lations for a C1+α expanding map f preserving the Lebesgue measure λ. The
proof is based on controlling the total variation of the pushforward of absolutely
continuous measures with reasonable density.

Fix s ∈ (0, 23 ), and let ρ1, ρ2 ∈ Hα
Cf ,s

where Cf > 0 is the constant such that
f ′(x)
f ′(y) ≤ eCfd(x,y)

α

and Hα
Cf ,s

is given by

Hα
Cf ,s

=

{
ϕ ∈ Cα(S1)

∣∣∣ ϕ(x) ≥ s,
ϕ(x)

ϕ(y)
≤ eCfd(x,y)

α

,∀x, y ∈ S1

}
. (34)

Denote by µ1 (resp. µ2) the measure with density ρ1 (resp. ρ2). We prove in
the following that the Wasserstein distance between fn∗ µ1 and fn∗ µ2 converges
exponentially to 0 by controlling the total variation between the two measures
(see the appendix), then this exponential convergence will give us decay of
correlations. We will need the following lemma to construct a coupling between
fn∗ µ1 and fn∗ µ2.

Lemma 3.18 (The transfer operator regularizes). For all K > Cf there is
n0 = n0(K, f) such that

Ln0

(
Hα
K, s2

)
⊂ Hα

Cf ,s
.

Proof. First, we prove that there is n1 ∈ N such that Ln1

(
Hα
K, s2

)
⊂ Hα

K,s. Let

ϕ ∈ Hα
K, s2

such that
∫
ϕ dλ = 1, then we can find an open interval I ⊂ S1 of

length l = l(α,K, s) (the length does not depend on ϕ) such that ∀x ∈ I, ϕ(x) ≥
3
2s (otherwise

∫
ϕ dλ can not be 1). Since f is expanding, we can find n2 ∈ N
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such that fn2I = S1, this implies that ∀x ∈ S1, the set I ∩ f−n2(x) ̸= ∅. For
x ∈ S1 let yx be an element of I ∩ f−n2 , then we have

Ln2(ϕ)(x) =
∑

y∈f−n2x

ϕ(y)

(fn2)′(y)
=

ϕ(yx)

(fn2)′(yx)
+
∑
y ̸=yx

ϕ(y)

(fn2)′(y)

≥ 1

(fn2)′(yx)

3

2
s+

∑
y ̸=yx

s

2(fn2)′(y)

=

(
1

(fn2)′(yx)
· 3 +

(
1− 1

(fn2)′(yx)

)
· 1
)
s

2
,

where the last equality comes from the fact that f preserves the Lebesgue mea-
sure. Denote by t = 1

sup(fn2 )′ , then have

Ln2(ϕ) ≥
(
t · 3 + (1− t) · 1

)s
2
. (35)

Using the same argument for Ln2(ϕ) we find that

L2n2(ϕ) ≥
(
t · 3 + (1− t) · a1

)s
2
, (36)

where a1 = t · 3 + (1− t) · 1. Using induction we have for k ∈ N∗

L(k+1)n2(ϕ) ≥
(
t · 3 + (1− t) · ak

)s
2
, (37)

where (an)n is defined by an+1 = t · 3 + (1− t) · an, and a0 = 1. This sequence
converges to 3, so there is k ∈ N such that ak > 2. Set n1 = (k + 1)n2, then n1

satisfies Ln1

(
Hα
K, s2

)
⊂ Hα

K,s.

Now it remains to prove that we have some n0 ∈ N such that L
(
Hα
K,s

)
⊂

Hα
Cf ,s

. Consider ϕ ∈ Hα
K,s then we have for n ∈ N and x, y ∈ S1

Ln(ϕ)(x) =
∑

xi∈f−n(x)

ϕ(xi)

(fn)′(xi)

≤
∑

yi∈f−n(y)

ϕ(yi)

fn′(yi)
eCfd(xi,yi)

α+Kd(xi,yi)
α

≤ Ln(ϕ)(y)e(Cfλ
n+Kλn)d(x,y)α ,

where λ = sup
x∈S1

1
|f ′(x)| ∈ (0, 1). Taking n0 ≥ n1 and such that Cfλ

n0 +Kλn0 ≤

Cf finishes the proof.

Proposition 3.19. There is C > 0 and δ ∈ (0, 1) such that for all ρ, ϱ ∈ Hα
Cf ,s

,
and associated µ, ν measures respectively, we have

W1(f
n
∗ µ, f

n
∗ ν) ≤ Cδn. (38)
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Proof. Let τ = s
2 . Since ρ, ϱ ∈ Hα

Cf ,s
, the measure µ and ν has at least τ as

common mass, in other words

∥µ− ν∥TV ≤ 1− τ.

Define the operator

T : Ms(S1) → Mτ (S1)

µ 7→ 1

1− τ
(µ− τλ),

where λ is the Lebesgue measure on S1, and Mc(S1) is the space of absolutely
continuous probability measures with density bigger than c.

Write the measures µ and ν in the following way

µ = τλ+ (1− τ)Tµ,

ν = τλ+ (1− τ)Tν.

Notice that the densities of Tµ and Tν ∈ are in Hα
2K, s2

, so using Lemma 3.18,

the measures fn0
∗ Tµ and fn0

∗ Tν has at least a common mass 2τ, so we have in
particular

fn0
∗ µ = τfn0λ+ (1− τ)τλ+ (1− τ)(1− τ)Tfn0

∗ Tµ

=
(
τ + τ(1− τ)

)
λ+ (1− τ)(1− τ)Tfn0

∗ Tµ,

and a similar formula for fn0
∗ ν. This implies that fn0

∗ µ and fn0
∗ ν have at least(

τ + τ(1− τ)
)
as common mass, which implies using Corollary 7.16 that

W1(f
n0
∗ µ, fn0

∗ ν) ≤ 1−
(
τ + τ(1− τ)

)
.

Using induction we get for all k ∈ N :

W1(f
kn0
∗ µ, fkn0

∗ ν) ≤ 1− τ

k∑
i=0

(1− τ)i = (1− τ)k+1. (39)

Using Proposition 7.11 in the appendix, we deduce that there is C > 0 such
that for all n ∈ N

W1(f
n
∗ µ, f

n
∗ ν) =W1(f

kn0+r
∗ µ, fkn0+r

∗ ν) =W1(f
r
∗f

kn0
∗ µ, fr∗f

kn0
∗ ν)

≤ CW1(f
kn0
∗ µ, fkn0

∗ ν)

≤ C(1− τ)k.

Taking δ = n0
√
1− τ finishes the proof.

Remark 3.20. It is possible to prove decay of correlations using only Lemma
3.18. If ϕ, ψ are two densities in Hα

Cf
, then we can write them as τ × 1 + (1−
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τ) × ϕ1 and τ × 1 + (1 − τ)ψ1 where ϕ1, ψ1 are two densities in Hα
2Cf

, then
applying the transfer operator to the difference we get

Ln0(ϕ− ψ) = (1− τ)(ϕ2 − ψ2),

where ϕ2 = Ln0(ϕ1) and ψ2 = Ln0(ψ1), iterating this argument finishes the
proof.

The Wasserstein distance is used to illustrate the method for Anosov diffeo-
morphisms (see Section 6).

Corollary 3.21 (exponential decay of correlations). If f is a C1+α expanding
map of the circle preserving the Lebesgue measure λ, then it has exponential
decay of correlations for Hölder observables, in other words there is θ ∈ (0, 1)
such that for all α-Hölder maps φ,ψ we have:∣∣∣∣∫ φ ψ ◦ fn dµ−

∫
φ dµ

∫
ψ dµ

∣∣∣∣ ≤ Cφ,ψθ
n. (40)

The proof is similar to the proof of Corollary 6.11.

3.4 Non Existence of ACIP

Now, if we assume that our expanding map is only C1, what can we say about
the existence of an ACIP? To answer that, Gora and Schmitt gave an explicit
example of a C1 expanding map that does not admit an ACIP [GS89]. Then,
Quas proved that generically C1 expanding maps of the circle do not have an
ACIP [Qua99]. Soon after, Avila and Bochi proved that generically C1 maps of
a smooth compact Riemannian manifold do not have an ACIP [AB06a]. In this
subsection, we recall briefly Quas argument.

In Theorem 3.6, Lnf [1] converges to the density of the invariant measure, so
to find an expanding maps without an ACIP, one would consider the set

S =

{
f ∈ E1(S1) | lim inf

n→+∞
λ
(
{x : Lnf [1](x) >

1

2
}
)
= 0

}
, (41)

where E1(S1) is the set of C1 expanding maps of the circle, and λ is the nor-
malized Lebesgue measure of S1. Clearly if f is C1+α, then it is not in S, and
this set is not empty, in fact we have

Lemma 3.22 ([Qua99]). The set S contains a dense Gδ.

From the previous lemma, we expect that for a generic expanding map f,
the sequence (Lf [1])n does not converge in the uniform convergence topology.

What happens if we consider instead the sequence
(Ln

f [h]

Ln
f [1]

)
n≥0

, where h is a

continuous function? The following lemma answers this question.

Lemma 3.23 (Quas). The set

R =

{
f ∈ E1(S1) | ∀h ∈ C0(S1),

Lnf [h]
Lnf [1]

c.u−−−−−→
n→+∞

∫
h dλ

}
(42)
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contains a dense Gδ-set, and for all f ∈ R, f is ergodic and conservative with
respect to the Lebesgue measure.

Using these two lemmas, we can prove the genericity of non existence of
ACIP for expanding maps.

Theorem 3.24. The set of f in E1(S1) which have no absolutely continuous
invariant probability measure contains a dense Gδ set.

Proof. Let f ∈ R ∩ S, and assume that it has an ACIP µ = ρλ. Fix ϵ > 0 and
h ∈ C0(M) such that

∥f − ρ∥ < ϵ and

∫
h dλ = 1.

We have for all n ∈ N

∥Lnf [h]− ρ∥1 = ∥Lnf [h]− Lnf [ρ]∥ ≤ ∥f − ρ∥1 < ϵ. (43)

Since f ∈ R, there is N ∈ N such that for all n ≥ N we have∣∣∣∣∣Lnf [h]Lnf [1]
− 1

∣∣∣∣∣ < ϵ,

which implies ∣∣Lnf [h](x)− Lnf [1]
∣∣ < ϵLnf [1](x),∀x ∈ S1,

integrating the previous inequality we get

∥Lnf [h]− Lf [1]∥1 < 2ϵ, (44)

in other words (Lnf [1])n converges to ρ in the L1 norm. On the other hand, since
f ∈ R, we can take a sequence ni → +∞ such that(

λ({x | Lni

f (x) >
1

2
})
)

→ 0, (45)

we take another subsequence of ni so that

L
nij

f [1]
a.e−−→ ρ. (46)

The equations (45) and (46) imply that for λ-a.e x in S1, we have ρ(x) ≤ 1
2 ,

but
∫
S1 ρ dλ = 1, which gives the contradiction, so the map f does not have an

ACIP.

Remarks 3.25.

• In [AB06a], Avila and Bochi generalised this result for C1 maps of a com-
pact Riemannian manifold, i.e for a generic C1(M,M) map f, it does not
have an ACIP. They also proved in [AB06b] that a generic expanding map
of the circle does not have a σ-finite ACIM.
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• Campbell and Quas proved in [CQ01] that a generic C1 expanding map f
has a unique equilibrium measure for its geometric potential, then using
Keller argument (see [Kel98]), they proved that the equilibrium measure is
physical. So we can have an expanding map such that the physical measure
is not absolutely continuous with respect to Lebesgue.

The following question might be investigated in the future.
Let ω be a modulus of continuity that does not satisfy Dini condition, then

the set of C1+ω expanding maps of the circle contains a Gδ dense set whose
elements have no ACIP.

Remark 3.26. In chapter 2, we took a manifold with a C1 expanding map, a
natural question to ask is whether any manifold M admit an expanding map?
For instance if M = S2 the two dimensional sphere, then M does not have an
expanding map, because otherwise, we can find a covering map (which is the
expanding map) from S2 to itself, and since S2 is simply connected, this is not
possible. In fact, Gromov proved that if a compact manifold has an expanding
map, then the expanding map is topologically conjugate to a infra-nilmanidold
endomorphism. The proof uses several results. First, Franks proved in [Fra70]
that if a compact manifold M admits an expanding map, then the fundamental
group π1(M) has polynomial growth. Then the result in [Gro81] which states that
if a finitely generated group Γ has polynomial growth, then Γ is virtually nilpotent
(i.e it contains a nilpotent subgroup of finite index). Finally, using the result in
[Shu70], which states that if π1(M) is virtually nilpotent, then any expanding
map of M is topologically conjugate to an expanding infra-nil-endomorphism.

3.5 Topology of Lebesgue preserving expanding maps

Denote by ΛLeb the set of degree 2, C1 expanding maps of the circle, which
preserve the Lebesgue measure and the orientation. In this part, we prove that
ΛLeb is arc connected (we equip ΛLeb with the C1 topology).

Lemma 3.27 ([BO23]). Let a ∈ (0, 1) and f1 : [0, a] → [0, 1] be a C2 expanding
diffeomorphism fixing 0, then there exists a unique extension of f1 to a Lebesgue
preserving full branch expanding transformation of the unit interval. Moreover,
the extension depends continuously on the C1 topology.

Proof. Consider the differential equation

1

f ′1
(
f−1
1 (x)

) + 1

f ′2
(
f−1
2 (x)

) = 1, x ∈ [0, ϵ], (47)

with initial condition f2(a) = 0. We want to find a solution in the class of
diffeomorphisms from [a, a+ ϵ′] to [0, ϵ], where ϵ, ϵ′ are small positive numbers.
Equation (47) is equivalent to

f ′2(x) =
f ′1

(
f−1
1

(
f2(x)

))
f ′1

(
f−1
1

(
f2(x)

))
− 1

, x ∈ [a, a+ ϵ]. (48)
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Since f1 is C
2, the Cauchy problem with the initial condition f2(a) = 0 admits a

solution. Let f2 be a maximal solution for (48), denote by [0, xmax] the maximal
interval of definition, and ymax = f2(xmax).

Let’s show that xmax = ymax = 1. Denote by f : [0, xmax] → R the map
given by f1 on [0, a] and f2 on [a, xmax].

Using (47), we have f ′2(x) > 1 for all x ∈ [0, xmax], so f2 is an expanding
diffeomorphism into its image.

We have for all continuous function h on [0, 1]∫ xmax

0

h ◦ f dLeb =
∫ a

0

h ◦ f1 dLeb+
∫ xmax

a

h ◦ f2 dLeb

=

∫ 1

0

h

f ′1 ◦ f
−1
1

dLeb+

∫ ymax

0

h

f ′2 ◦ f
−1
2

dLeb.

If ymax = 1, then taking h = 1 shows that xmax = 1. If ymax < 1, then we
have ∫ xmax

0

h ◦ f dLeb =
∫ ymax

0

h dLeb+

∫ 1

ymax

h

f ′1 ◦ f
−1
1

dLeb.

Taking h = 1 proves that xmax = 1, then taking h = 0 on [0, ymax], affine and

positive on (ymax, 1] gives
∫ 1

ymax
h dLeb =

∫ 1

ymax

h
f ′◦f−1 dLeb <

1
1+ϵ

∫ 1

ymax
h dLeb,

which gives a contradiction. ymax can not be bigger than 1, because of the
equation (47). This proves that xmax = ymax = 1. Using equation (47) we
deduce that f preserves the Lebesgue measure.

Remarks 3.28.

• The map f1 can be assumed to be C1 only, in this case to solve equation
(47), we use Peano existence theorem. Uniqueness comes from the fact
that the extension preserves the Lebesgue measure. Indeed, assume first
that h1, g1 : [a, 1] → [0, 1] are two extension of f1 to a Lebesgue preserving
maps h and g respectively, then we have for all x ∈ [0, 1]

Leb(h−1[0, x]) = Leb([0, x]) = Leb(g−1[0, x]),

which implies that Leb([a, h−1
1 (x)]) = Leb([a, g−1

1 (x)]), hence h1 = g1.

• If f ∈ ΛLeb, then f has a unique fixed point x1, and there is xf ∈ S1 such

that
∫ xf

x1
f ′(t) dt = 1, and f ′(xf ) =

f ′(x1)
f ′(x1)−1 , which makes a relationship

between expanding maps of the circle, and the interval [0, 1] full branches
map. This remark implies that ΛLeb is arc connected. Moreover, it gives
us a parametrization of ΛLeb, in particular the fundamental group of ΛLeb
is Z.

Theorem 3.29 ([BO23]). The space ΛLeb of C1 expanding and Lebesgue pre-
serving maps of degree 2 is arc connected.

36



Proof. Let f be the doubling map of the circle, and g ∈ ΛLeb. Up to composing
g with a rotation, we can assume that g and f have the same fixed point 0.
Denote by xg the point in S1 such that

∫ xg

0
g′(t) dt = 1. Assume that xg = 1

2 ,
and let (ht)t∈[0,1] be a homotopy between f|[0, 12 ] and g|[0, 12 ] such that for all

t ∈ [0, 1], ht is a C1 expanding map satisfying ht(0) =
h′
t(

1
2 )

h′
t(

1
2 )−1

. Using lemma

3.27, ht can be extended to a map Ht in ΛLeb. In this case, (Ht)t is a homotopy
between f and g.

Now, assume that xg <
1
2 . Let k1 : [0, xg] → [0, 1] be a C1 convex diffeomor-

phism satisfying k(0) =
k(xg)
k(xg)−1 , then the previous argument and lemma 3.27

implies that k1 can be extended to a map k ∈ ΛLeb which is in the arc connected
component of g. It remains to prove that k is in the arc connected component
of f . For t ∈ [0, 1] let ht : [0, (1 − t)xg +

t
2 ] be a concave function that can be

extended to an expanding and volume preserving transformation of the circle
(see figure 1), then (ht)t can be extended to (Ht)t, which shows that k is in the
connected component of f .

1
2

Figure 1: A homotopy between f and h.
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4 Uniformly hyperbolic maps

In this section, we introduce the notion of uniform hyperbolicity. One can
deduce from this notion a lot of properties on the dynamic of the underlying
map, for instance chaos. For a more detailed introduction to this subject see
[KH97, BS02].

4.1 Uniform hyperbolicity

Let U be an open subset of a compact Riemannian manifoldM , and f : U →M
a C1 diffeomorphism.

Definition 4.1. An invariant set Λ ⊂ U is called hyperbolic if there are some
C > 0 and λ ∈ (0, 1) such that for all x ∈ Λ we have a splitting of TxM =
Eux ⊕ Esx which is f invariant, i.e dfx(E

u
x ) = Eufx and dfx(E

s
x) = Esfx and such

that

∥dfn(v)∥ ≤ Cλn∥v∥,∀n ∈ N, v ∈ Esx, (49)

∥df−n(v)∥ ≤ Cλn∥v∥,∀n ∈ N, v ∈ Eux . (50)

In the definition, we didn’t assume any continuity on the distributions Es

and Eu. In fact it is not hard to prove the continuity of Eu and Es starting
from the given definition. When Λ =M , f is called an Anosov diffeomorphism.

Definition 4.2. A hyperbolic set Λ is called an attractor if there is an open set
U ⊃ Λ, such that f(U) ⊂ U and

⋃
n∈N

fnUΛ.

Proposition 4.3. The distributions Es and Eu are continuous.

Proof. We can assume that C = 1 by considering another equivalent Rieman-
nian metric on M, and taking λ′ ∈ (λ, 1) (see Proposition 5.2.2 of [BS02]). Let
(xn)n be a sequence in Λ that converges to x. If Eux = TxM (resp Esx = TxM),
then dfxn expands (resp contracts) vectors in the tangent space TxnM, in other
words Euxn

= Txn
M (resp Esxn

= Txn
M). Assume that the splitting Eu ⊕Es =

TxM is not trivial. By choosing a subsequence of (xn)n we can assume that
dimEsxn

= c, and since the Grassmannian fiber overM by c-dimensional subvec-
tor spaces is compact, there is another subsequence of (xn)n such that (Esxn

)n
converges to some E ⊂ TxM of dimension c. Since f is C1, dfx is contracting on
E hence E ⊂ Esx, the same argument gives F ⊂ Eux and dfx is expanding on F.
Since for all n ∈ N, Euxn

⊕Esxn
= Txn

M,E ⊂ Esx, F ⊂ Eux and Eux ⊕Esx = TxM,
we deduce that E = Esx and F = Eux .

Here are some classical examples of hyperbolic maps.

Examples 4.4.
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• Arnold Cat map: consider the automorphism f : T2 → T2 given by the

transformation f =

(
2 1
1 1

)
. The matrix

(
2 1
1 1

)
has two eigenvalues

λ, 1
λ , where λ = 2

3+
√
5
. Let Eu0 (resp Es0) be the eigenspace corresponding

to 1
λ (resp λ). Since dfx =

(
2 1
1 1

)
, the splitting TxT2 = Eu0 ⊕ Es0 is

f -invariant, and for all n ∈ N and v ∈ Eu0 (resp v ∈ Es0) we have

∥dfnx v∥ = λn∥v∥ ( resp ∥df−nx v∥ = λn∥v∥),

so f is hyperbolic.

In general any matrix in SLn(Z), which does not have eigenvalue on the
unit circle, induces an Anosov diffeomorphism on Tn.
More generally, let G be a simply connected Lie group, and Γ a lattice on
G. Let A be an automorphism of the Lie group G such that A(Γ) = Γ, and
deA is hyperbolic, then A induces an Anosov diffeomorphism on G/Γ.

Remarks 4.5.

– If a Lie group G has an automorphism A with deA hyperbolic, then
G is necessarily nilpotent. (see [KH97])

– Notice that for any A ∈ SLn(Z), A preserves the Lebesgue measure on
Tn, we prove later that any transitive C1+Dini Anosov diffeomorphism
preserves a SRB measure.

• The Smale Horseshoe: to construct it, consider an injective C∞ immersion
f : R→ R2, where R := [0, 1]2, that acts as follows

Figure 2: Action of the first iterate of f on R.

So we apply a linear horizontal contraction and vertical expansion, then
we bend the new rectangle to a ”horseshoe”.

Let H1
0 and H1

1 be the two connected component of H1 := f(R) ∩ R, and
V 1
0 , V

1
1 be the set of points in R such that f(V 1

i ) = Hi.

Let Hn :=
n⋂
i=0

f iR, which consists of 2n horizontal connected component

Hn
i , and let V n :=

n⋃
i=0

V ni . Then the set C =
⋂
n∈N

(Hn∩V n) is a Cantor set

of zero Lebesgue measure, moreover f(C) = C, and f : C → C is called
the horseshoe map. This map f : C → C is hyperbolic by construction,
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V1V0

H0

H1

Figure 3: Horizontal and vertical strips.

in this case Eu(x) is the X-axis and Es(x) is the Y -axis for all x ∈ C.
Moreover C is not an attractor, and f does not have a physical measure.
In [Bow75b], Bowen constructed a horseshoe of positive measure, and the
restriction of the Lebesgue measure on C is an ergodic invariant measure.
We emphasize that his example is C1 but not C1+Dini.

Remark 4.6. Katok proved in [Kat80] that any C1+α diffeomorphism of
a compact surface with positive topological entropy, contains a horseshoe.

• Smale-Williams solenoid: consider the solid torus T = D2×S1 and define
the transformation f : T → T by

f(x, y, θ) =
(1
4
x+

1

2
cos θ,

1

4
y +

1

2
sin θ, 2θ

)
.

This transformation is contracting by a factor 1
4 in the D2 direction, and

expanding by a factor 2 in the S1 direction. It is also injective, and f(T ) ⊂
T , and moreover the set Λ =

⋂
n∈N

fn(T ) is a hyperbolic attractor for f .

Consider the section S0 = D2×{0}, then C =
⋂
n∈N

fn(S0) is a Cantor set,

and locally, Λ is homeomorphic to C × (−ϵ, ϵ).
Notice that the Lebesgue measure of Λ is 0, because Jacf(x,y,θ) =

1
8 , and

since any invariant measure for f is supported in Λ, f does not have an
invariant measure equivalent to Lebesgue. In that case, a natural invariant
measures to consider are physical (2.27) and SRB measures (2.33). In this
case, f has a unique SRB measure µ, which is also physical, and locally,
µ is the product of the Bernoulli measure on the Cantor set C and the
Lebesgue measure in the S1 direction.

A classical approach to deal with uniform hyperbolic maps, is to consider
the space of continuous (resp. bounded) sections σ : Λ → TΛ, which is a
Banach space, and once we have the first definition of hyperbolicity, we can write
this Banach space as the direct sum of two closed subspaces, corresponding to
sections with values on Eu or Es. So we have a natural linear action of f on
that Banach space which preserves the closed subspaces. This approach helps
us prove a lot of result like shadowing lemma, local stability, etc (see [Yoc95]).

In general, it is hard to check uniform hyperbolicity using Definition 4.1 (for
instance we don’t know Eu and Es), to deal with this difficulty we study cones
instead of linear subspaces.
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4.2 Hyperbolicity via cone techniques

Let x ∈ M and E be a linear subspace of TxM, define the cone centered at E
by

KE
α (x) =

{
v ∈ TxM : ∥v2∥ ≤ α∥v1∥ where v = v1 + v2 and v1 ∈ E, v2 ∈ E⊥} .

For a hyperbolic map f, KEu

α (resp KEs

α ) is called unstable (resp stable) cone
field. We say that it has a small angle if α is small.

A cone field K on M is said to be invariant by f if for all x ∈M

dfx
(
K(x)

)
⊂ int

(
K(fx)

)
∪ {0}.

Proposition 4.7. (Proposition 5.4.3 [BS02]) Let Λ be a compact invariant set
of f : U → M. Suppose that there is α > 0 and for every x ∈ Λ there are
continuous subspaces Ẽs and Ẽu(x) such that Ẽs(x) ⊕ Ẽu(x) = TxM, and the

cone KẼu

α (x) and KẼs

α (x) are f invariant and ∥dfxv∥ < ∥v∥ for non zero v ∈
KẼs

α (x), and ∥df−1
x v∥ < ∥v∥ for non-zero v ∈ KẼu

α (x). Then Λ is a hyperbolic
set of f .

4.3 Local manifold theory

In this subsection let f : Λ → Λ be a Cr hyperbolic map. Define the local stable
and unstable manifolds of x ∈ Λ by

Wu
ϵ (x) = {y ∈M | d(f−kx, f−ky) ≤ ϵ,∀k ≥ 0},

W s
ϵ (x) = {y ∈M | d(fkx, fky) ≤ ϵ, ∀k ≥ 0}.

The definition of stable and unstable manifolds is dynamic, and the theorem
of Hadamard-Perron says that there is ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0) and
x ∈ Λ, Wu

ϵ (x) (resp. W s
ϵ (x)) is a Cr submanifold tangent to Eu (resp. Es).

Now, define the global unstable (resp stable) manifold of a point x by

Wu(x) = {y ∈M | d(f−kx, f−ky) −−−−−→
k→+∞

0},

W s(x) = {y ∈M | d(fkx, fky) −−−−−→
k→+∞

0},

then we have for any ϵ > 0

Wu(x) =
⋃
n∈N

fn
(
Wu
ϵ (f

−nx)
)
, W s(x) =

⋃
n∈N

f−nW s
ϵ (f

nx)
)
.

We give the sketch of the proof of Hadamard-Perron (for more details see
Theorem 17.4.3 in [KH97]). For simplicity, let x be a fixed point of f. Consider
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the set of L-Lipschitz submanifolds of dimension dimEux passing through x,
more precisely

GL = {expx
(
Graph(φ)

)
| φ : B(x0, r) ∩ Eux0

→ Esx0
, with φ is L-Lipschitz}.

The map f acts on GL for some L > 0, this action is called graph transform,
and we will prove that it is contracting for the uniform topology on GL, hence it
has a unique fixed point. This unique fixed point is the local unstable manifold.
Then use the fact that it is tangent to the continuous distribution Eu to prove
that it is C1.

Let f̃ = exp−1
x ◦f◦expx in a neighborhood B(0, r). For all ϵ > 0 small, we can

choose r small enough, so we can write f̃(x, y) =
(
Ax+ α(x, y), By + β(x, y)

)
,

where A : Eux0
→ Eux0

(resp B : Esx0
→ Esx0

) is linear and expanding (resp
contracting), and ∥α∥C1 , ∥β∥C1 ≤ ϵ.

Claim 4.8. There is L > 0 such that for all L-Lipschitz functions

φ : B(x0, r) ∩ Eux0
→ Esx0

,

the set f̃(Graph φ) is a graph of a L-Lipschitz function

φ̃ : B(x0, r) ∩ Eux0
→ Esx0

.

Proof. For any δ > 0, there is r > 0 small such that ∥α∥C1∥, ∥β∥C1∥ ≤ δ, for
a given small δ. Choose L > 0 such that λδ(1 + L) < 1. Consider the map
Gφ : Eur (x0) → Eu(x0) given by

Gφ(x) = Ax+ α(x, φx), (51)

which represents the Eu coordinates of f̃(graphφ).

(x, φx) f̃(x, φx)

Gφ(x)

Figure 4: Graph transform

To prove that f̃(φ) is a graph of a function, it is enough to prove that Gφ is
injective, and its image covers Eur (x0) = Eu(x) ∩B(0, r). Thus for y ∈ Esr(x0),
we need to find a unique x ∈ Eur (x0), such that Gφ(x) = y, or equivalently, the
map Fy(x) = A−1y −A−1α(x, φx) has a unique fixed point.

The map F is contracting because

∥F (x1)− F (x2)∥ = ∥A−1α(x1, φx1)−A−1α(x2, φx2)∥
≤ ∥A−1∥∥α(x1, φx1)− α(x2, φx2)∥
≤ λδ(1 + L)∥x1 − x2∥.

42



So f̃(Graph φ) is a graph a a function φ̃. It remains to show that φ̃ is L-
Lipschitz. Suppose that φ̃(x′1) = y′1 and φ̃(x′2) = y′2 and take (x1, y1), (x2, y2) ∈
Graph(φ) such that

(x′i, y
′
i) = f̃(xi, yi) =

(
Axi + α(xi, φxi), Bφxi + β(xi, φxi)

)
, (52)

then we have

∥y′2 − y′1∥ = ∥B(φx2 − φx1) + β(x2, φx2)− β(x1, φx1)∥
≤ λL∥x2 − x1∥+ δ(1 + L)∥x2 − x1∥
≤
(
λL+ δ(1 + L)

)
∥x2 − x1∥

and

∥x′2 − x′1∥ = ∥A(x2 − x1) + α(x2, φx2)− α(x1, φx1)∥

≥ 1

λ
∥x2 − x1∥ − δ(1 + L)∥x2 − x1∥

=
( 1
λ
− δ(1 + L)

)
∥x2 − x1∥,

we deduce that ∥φ̃(x′2)− φ̃(x′1)∥ ≤ λL+δ(1+L)
1
λ−δ(1+L) ∥x

′
2 − x′1∥, and since

λL+ δ(1 + L)
1
λ − δ(1 + L)

≤ L,

we deduce that φ̃ is L-Lipschitz. Hence, we proved that f acts on GL by graph
transform.

Consider the distance on GL given by

d(φ,ψ) := sup
x∈Eu

r (x0)

∥φ(x)− ψ(x)∥
∥x∥

. (53)

It is a well defined distance, GL equipped with this distance is a complete metric
space, and the action of the graph transform is contracting with respect to this
distance, more precisely

Claim 4.9. For all φ,ψ ∈ GL, we have

d(φ̃, ψ̃) ≤ λ+ δ(1 + L)
1
λ − δ(1 + L)

d(φ,ψ). (54)

The unique fixed point is a candidate for the local unstable manifold of x0,
using the fact that Eu is the tangent set of the graph of this fixed point (see
Definition 6.2.18 in [KH97]), we deduce that the fixed point is C1, then we can
check that points in the graph of the fixed point get exponentially close when
we apply f−1 to this graph.
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4.3.1 Stable and unstable holonomies

Given an Anosov diffeomorphism f , we have two foliations, the stable Fs and
unstable Fu foliations. Consider two local transversal, τ1, τ2 to Fs, then when
it make sense, we call a holonomy map hτ1,τ2 the map defined from τ1 to τ2,
that associates for each element in τ1 an element in τ2 by sliding along stable
leaf, in other words hτ1,τ2(x) = W s

loc(x) ∩ τ2 (we define similarly the holonomy
defined by sliding along unstable leaves).

Since local stable leaves depend continuous in the base point (See The In-
clination Lemma in [KH97] page 257), the map hτ1,τ2 is continuous. One can
prove in fact that it is Hölder continuous. This map in not necessarily absolutely
continuous, an example of C1 Anosov diffeomorphism was given by [RY80]. We
will prove later that if f is C1+Dini then the stable and unstable holonomies are
absolutely continuous.

4.4 An example of a hyperbolic map without a SRB mea-
sure

Fix a C1 expanding map T of the circle that does not have an absolutely con-
tinuous invariant measure, and let T = D2 ×S1 be the open solid torus. Define
a map f : T → T by

f(x, y, θ) :=
(1
4
x+

1

2
cos θ,

1

4
y +

1

2
sin θ, T (θ)

)
. (55)

The f is a hyperbolic map on Λ =
⋂
n≥0

fn(U), and any invariant measure for

f is supported in Λ. If f has a SRB measure µ, then this measure projects to
an invariant measure for T which is absolutely continuous with respect to the
Lebesgue measure, which proves that f does not have a SRB measure.

Remark 4.10. This example is a skew-product over the map T , and in [Klo21],
a dictionary between properties for the maps is given by Theorem A.

Definition 4.11. Let f : M → M be a map. A point x in non-wandering for
f if for every neighborhood U of x,

U ∩
⋃
n>0

fn(U) ̸= ∅.

The set of non-wandering points is denoted by Ω(f), and it is a closed set.

Definition 4.12. A diffeomorphism f :M →M is said to be Axiom A if Ω(f)
is hyperbolic, and periodic points are dense in Ω(f).

In the sequel, f will be assumed to be an Axiom A diffeomorphism.
The main classical theorem in this section is

Theorem 4.13. [Sinai, Ruelle, Bowen] If f : Ω(f) → Ω(f) is a C1+α transitive
Anosov diffeomorphism (Axiom A diffeomorphism) then it has a SRB measure
which is physical.
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We prove in Section 5 this theorem in weak regularity using the same ap-
proach to prove Theorem 4.13.

4.5 Constructing SRB measures using the coding

In this subsection we recall the classical approach to the construction of the SRB
measure for Axiom A diffeomorphisms. Consider an Axiom A diffeomorphism
f : Ω(f) → Ω(f). Using Smale-decomposition Theorem (See [Bow75a]), we can
assume that f transitive in Ω(f).

Bowen proved in [Bow75a] that f : Ω(f) → Ω(f) has a Markov partition, in
particular it is semiconjugated to a subshift of finite type. More precisely, there
are (ΣA, σ) and a surjective Hölder map π : ΣA → Ω(f) such that π ◦σ = f ◦π.

If we take a potential with Dini summable modulus ϕ : Ω(f) → R, then
π ◦ σ has a Dini summable modulus. To get an equilibrium state for (ΣA, σ, π ◦
ϕ) one can after several lemmas consider only the one-sided shift (Σ+

A, σ, ϕ̃), (

where ϕ̃ is a potential depending only on the future, and cohomologous to π ◦ϕ
[PP90]) which is an expanding map, then we apply the adapted Ruelle-Perron-
Frobenius theorem [FJ01a] to get an equilibrium measure for (σ, π ◦ϕ). Pushing
this measure by π gives us an equilibrium measure for

(
fΩ(f), ϕ

)
. Finally we can

use either Keller argument [Kel98] or the proof in [Bow75a] to prove that the
equilibrium measure is physical.

We recall that a set of small diameter R is called a proper rectangle if
R is invariant by Bowen brackets, i.e for x, y ∈ R the point [x, y] ∈ R, and
int(R) = R.

Definition 4.14. A Markov partition for Ω(f) is a finite cover

C = {R1,R2, . . . ,Rm} ,

such that

i. int(Ri) ∩ int(Rj) = ∅, ∀i ̸= j.

ii. f
(
W s
ϵ (x) ∩Ri

)
⊂W s

ϵ (fx) ∩Rj and Wu
ϵ (fx) ∩Rj ⊂ f

(
Wu
ϵ (x) ∩Ri

)
Theorem 4.15 ([Bow75a]). Ω(f) has a Markov partition of arbitrarily small
diameter.

Fix a finite Markov partition C = {R1,R2, . . . ,Rm} of diameter ϵ less
than the expansivity constant of f , then for x ∈ Ω(f), consider the cod-
ing (· · · , a−1, a0, a1, · · · ) of the orbit (fk)k∈Z with respect to the partition
C, where for each k, ak ∈ {1, · · · ,m} and fkx ∈ Rak . We stress that the
coding is not unique, but if x, y ∈ Ω(f) have the same coding, then for all
k ∈ Z, d(fkx, fky) < ϵ, which implies by expansivity that x = y.

Consider the set

ΣC = {(ak)k∈Z,where (ak)k is a coding of a point x ∈ Ω(f)},
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then ΣC is invariant by the shift map σ. Since elements of C are closed, the set
ΣC is closed. Denote by π : Σ → Ω(f) the map which associates to a sequence
(ak)k the unique point in Ω(f) whose coding is given by that sequence, then we
have by definition f ◦ π = π ◦ σ, moreover the map π is Hölder continuous.

Denote by µ the unique equilibrium measure for the geometric potential
ϕ(u) = log Jacuf. In [Kel98] Keller proved, in Theorem 6.1.8, that for Lebesgue

almost every point x ∈M, any weak* limit ν of ( 1n

n−1∑
k=0

δfkx)n satisfies hν(f) +∫
ϕ(u) dν ≥ 0. Since the pressure P (ϕ(u)) := hµ(f) +

∫
ϕ(u) dµ = 0, and by

unicity of the equilibrium measure, we deduce that for Lebesgue a.e x ∈ M,

( 1n

n−1∑
k=0

δfkx)n converges to µ, in other words, the measure µ is a physical mea-

sure.
Using this argument, [Qiu11] proved that a generic C1 Axiom A diffeomor-

phism has a unique physical measure.

Remark 4.16. It is not known whether a generic C1 axiom A has a SRB
measure or not.
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5 Existence of SRB measure in weak regularity

In this section, we prove existence of SRB measures in low regularity (Theorem
1.1).

Theorem 5.1. Let f : Ω(f) → Ω(f) be a transitive C1+ω Axiom A diffeomor-
phism, and ω satisfies Dini condition, then f has a SRB measure.

5.1 Regularity of stable and unstable distributions

Anosov proved that the stable and unstable distributions of a C2 hyperbolic
diffeomorphism f are Hölder continuous. The regularity of the stable and un-
stable distributions is optimal in the sense that; even if f is analytic, the stable
and unstable distribution are only Hölder continuous in general (examples are
given in the famous paper of Anosov [Ano67a]). Let f : U ⊂→ M be a diffeo-
morphism, and Λ a closed and f -invariant subset of M that is hyperbolic for f ,
then we have

Theorem 5.2. If f is C1+Dini hyperbolic map, then the stable Es and unstable
Eu distributions have a modulus of continuity that satisfies Dini condition.

To prove this theorem, fix a small ϵ > 0, and approach Es (resp Eu) by a
smooth distribution Ẽs (resp Ẽu) (in other words ∥E∗− Ẽ∗∥∞ < ϵ) and extend
them to an open neighborhood U of Ω(f). Consider a distribution Y close to
Ẽu, we can view this distribution as a map F defined on M with values on
L(Ẽu, Ẽs) as follows

F (x) : Ẽu → Ẽs, (56)

where F (x) is the linear map whose graph is Y (x).
Let Su := C0

(
M → L(Ẽu, Ẽs)

)
the space of such maps, and for F ∈ Su let

∥F∥∞ = max
x∈M

∥F (x)∥.
Let A,B,C,D the maps defined on M as follows; for x ∈ M , we have

dfx =

(
A(x) B(x)
C(x) D(x)

)
, written with respect to the splitting Ẽs ⊕ Ẽu.

The diffeomorphism f acts on Su by pushing forward distributions. If F ∈
Su, let LF denote the map associated to the push-forward of F. Then we have

LF (fx) = [A(x)F (x) +B(x)] [C(x)F (x) +D(x)]
−1
. (57)

Notice that we have ∥A(x)∥, ∥D−1(x)∥ < λ+ ϵ, ∥C(x)∥, ∥B(x)∥ < ϵ, and

∥(C(x)F (x) +D(x))−1∥ ≤ λ+ 4ϵ.

5.1.1 Modulus of continuity of a distribution

To talk about the modulus of continuity of a distribution, we can either use
local charts on M, so locally a distribution is a collection of matrices, or as
in [Ano67a], we use parallel transport to compare between two subspaces in
different tangent spaces. To do this we need the following lemma,

47



Lemma 5.3 ([Ano67b]). Let D be a smooth distribution on the Riemannian
manifold M, then there is a connection on the bundle E (with base M and
fiber D) such that local parallel transport along geodesics (with respect to the
Riemannian metric on M) is an isometry.

Consider the quadruplet (E,F, g, h), where E and F are two smooth distri-
butions, and g, h : M → M are smooth maps. Consider a continuous map ϕ
defined on M to linear maps as follows

ϕ(x) : Egx → Fhx.

Let Πux′,x : Ex′ → Ex (resp. Πsx′,x : Fx′ → Fx) be the parallel transport of
the connection associated to E (resp. F ) given by Lemma 5.3, then we define
the modulus of continuity of ϕ as follows

ωϕ(r) = sup
x,x′∈M,d(x,x′)≤r

∥∥∥Πshx′,hxϕ(x
′)Πugx,gx′ − ϕ(x)

∥∥∥, (58)

where the norm here is the usual norm on L
(
Egx, Fhx

)
.

For a distribution F, let ∥F∥ = sup
x∈M

∥F (x)∥, and if ∥F∥ ≤ 1, then ∥LF∥ ≤ 1.

Using this definition for the modulus of continuity, we have

Proposition 5.4 ([Ano67b]). Fix (E,F, g0, h0) a smooth quadruplet, then we
have for all continuous maps ψ, ϕ :M → Linear(Eg

0
→ Fh

0
)

ωϕ+ψ(r) ≤ ωϕ(r) + ωψ(r). (59)

We also have whenever it makes sense

• ωϕ◦g(r) ≤ ωϕ(ωg(r)).

• ωϕ−1(r) ≤ ∥ϕ−1∥2ωϕ(r).

• ωψϕ(r) ≤ ∥ψ∥ωϕ(r) + ∥ϕ∥ωψ(r).

Now we give the proof of the main theorem of this thesis.

Proof of Theorem 5.2. Denote by ω the modulus of continuity of Df, which is
Dini summable, and assume that ∥F∥ ≤ 1. Using the formula (57), we have

ωLF◦f (r) = ω(AF+B)(CF+D)−1(r)

≤ ∥AF +B∥ω(CF+D)−1(r) + ∥(CF +D)−1∥ω(AF+B)(r)

≤ ∥AF +B∥∥(CF +D)−1∥ω(CF+D)(r) + ∥(CF +D)−1∥ω(AF+B)(r)

≤ (λ+ 4ϵ)2ω(CF+D)(r) + (λ+ 4ϵ)ω(AF+B)(r)

≤ (λ+ 4ϵ)2
(
∥C∥ωF (r) + ∥F∥ωC(r) + ωD(r)

)
+ (λ+ 4ϵ)

(
∥A∥ωF (r) + ∥F∥ωA(r) + ωB(r)

)
≤ λωF (r) + ωA(r) + ωB(r) + ωC(r) + ωD(r),
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and since ωA(r), ωB(r), ωC(r), ωD(r) ≤ ω(r) because Df has ω as a modulus of
continuity, we have for all r > 0

ωLF◦f (r) ≤ λωF (r) + 4ω(r). (60)

Moreover, if we denote by L the Lipschitz constant of f−1 which is bigger than
1, then we have

ωLF (r) = ω(LF◦f)◦f−1(r) ≤ ωLF◦f
(
ωf−1(r)

)
≤ ωLF◦f (Lr) ≤ λωF (Lr) + 4ω(Lr).

Using the previous inequality we deduce that for all n ∈ N∗

ωLnF (r) ≤ λωLn−1F (Lr) + 4ω(Lr). (61)

Let F0 be the map associated to Eu. Since the action of f on distribution
transversal to Es is contracting, we have for all F with norm less than 1

lim
n→+∞

∥LnF − F0∥ = 0. (62)

Using (62) and taking n to infinity in (61), we deduce that

ωF0
(r) ≤ λωF0

(Lr) + 4ω(Lr). (63)

Using induction, we get for n ∈ N

ωF0
(r) ≤ λnωF0

(Lnr) +

n∑
k=1

λkω(Lkr),

equivalently

ωF0

( r

Ln

)
≤ λnωF0

(r) +

n∑
k=1

λkω
( r

Ln−k

)
. (64)

Since ω is Dini summable, then we have∑
n≥1

(
λnωF0

(r) +

n∑
k=1

λkω
( r

Ln−k

))
< +∞. (65)

It is enough to prove that
∑
n≥1

n∑
k=1

λkω
(

r
Ln−k

)
is finite. Indeed we have for all

N ∈ N
N∑
n=1

n∑
k=1

λkω
( r

Ln−k
)
=

N∑
n=1

N∑
k=1

λkω
( r

Ln−k
)
1{k ≤ n}

=

N∑
k=1

N∑
n=1

λkω
( r

Ln−k
)
1{k ≤ n}

=

N∑
k=1

λk
N∑
n≥k

ω
( r

Ln−k
)
≤

N∑
k=1

λk
(∑
n≥0

ω
( r
Ln
))
.
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We deduce using (64) that
∑
n≥1

ωF0

(
r
Ln

)
< +∞, hence the modulus of con-

tinuity of Eu satisfies Dini condition. Considering f−1 which is C1+Dini shows
that Es has a modulus of continuity that satisfies Dini condition.

Remark 5.5. If f is C1+α, this proof gives us an explicit Hölder constants of
Eu and Es.

5.2 Distortion lemma

In this subsection, we prove that the Dini condition is sufficient to have a dis-
tortion lemma for the unstable Jacobian, which is the main tool to prove the
existence of a SRB measure, and the absolute continuity of the holonomy maps.

Denote by ωu the modulus of continuity of the unstable distribution Eu,
then we have

Lemma 5.6 (Distortion lemma). Let ϵ > 0, and let U be an open set of diameter
ϵ, then there exist Cd = Cd(ω

u, λ, ϵ) > 0 such that if Wu
loc is a piece of unstable

manifold in U , then ∀x, y ∈Wu
loc and n > 0 we have

C−1
d ≤

|det df−n(x)|Eu
x
|

|det df−n(y)|Eu
y
|
≤ Cd. (66)

Proof. Using the fact that Eu has a modulus ωu we have∣∣∣∣∣∣
det df−1

|Eu
x̃

det df−1
|Eu

ỹ

− 1

∣∣∣∣∣∣ ≤ ωu
(
d(x̃, ỹ)

)
, ∀x̃, ỹ ∈ Λ,

we deduce that∣∣∣∣∣det df
−n
|Eu

x

det df−n|Eu
y

∣∣∣∣∣ =
∣∣∣∣∣∣
n−1∏
k=0

det df−1
|Eu

f−kx

det df−1
|Eu

f−ky

∣∣∣∣∣∣ ≤
n−1∏
k=0

(
1 + ωu

(
d(f−kx, f−ky)

))
≤

+∞∏
k=0

(
1 + ωu

(
λkd(x, y)

))
,

and since ωu satisfies Dini condition, we deduce that there is Cd = Cd(ω
u, λ, ϵ)

such that
+∞∏
k=0

(
1 + ωu

(
λkd(x, y)

))
≤ Cd,

which finishes the proof.

Now we are ready to prove Theorem 5.1

50



Proof of 5.1. Consider a small piece L of unstable manifold, and let mL be the
normalized Lebesgue measure on L. Define a sequence of measures µn by

µn =
1

n

n−1∑
k=0

fn∗mL.

Let µ be a weak∗ limit of (µn)n, and fix a rectangle R of small diameter. Let
ρn be the density of fn∗mL with respect to the volume of fn(L). Using lemma
5.6 we deduce that there is Cd > 0 that does not depend on n, such that for
any x, y ∈ R ∩Wu(x) we have

C−1
d ≤ ρn(x)

ρn(y)
≤ Cd,

which implies in particular that

C−1
d ≤

1
n

n−1∑
k=0

ρk(x)

1
n

n−1∑
k=0

ρk(y)

≤ Cd.

We disintegrate the measures µn in the rectangle R along unstable leaves. Let
µsn be the transversal measure of the disintegration. By the previous inequality
we deduce that

µsn × C−1
d m ≤ µn ≤ µsn × Cdm, (67)

where m here denote the normalized Lebesgue measure along local unstable
leaves in R. Passing to a subsequence of (µn) we can assume that µsn converges
to a measure µs, and since the stable holonomy is continuous, the measure µs

is the transversal measure of µ. We deduce that

C−1
d µs ×m ≤ µ ≤ Cdµ

s ×m,

hence µ is a SRB measure.

Remark 5.7. In [HY95], the same argument is used to prove existence of SRB
measure for Anosov diffeomorphism with a neutral fixed point.

5.3 Absolute continuity of the holonomy maps

In this section, we will be interested in the absolute continuity of the holonomy,
because it implies that the SRB measure is physical.

For simplicity, we consider local unstable manifolds as transversals, and we
prove that if f is C1+Dini, then the holonomy is absolutely continuous. Many au-
thors proved the absolute continuity of the holonomy in various settings (Anosov
[Ano67a] for C2 hyperbolic maps, Mané [Man12] for C1+α), the proof of Mané
can be adapted for C1+Dini maps. There is also a proof by Abdenur and Viana
for C1+α partially hyperbolic diffeomorphism [FH19] Theorem B.7.6, and the
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proof we give here is inspired by their proof. In [BR75], Bowen and Ruelle
proved a weaker version of ACH, which they called volume lemma, that gives
an estimation of the volume of a dynamical ball, and is very important to prove
the existence of a physical measure using the symbolic dynamics approach.

The proof is as follows: we prove that the holonomy does not change a lot the
volume of unstable dynamical balls of the transversal, then using the Besicovitch
covering argument (see Section 7.1), we deduce the absolute continuity.

Given x ∈M, we define the unstable dynamical ball Bun(x, ϵ) to be the ball
inWu(x) of center x and radius ϵ for the distance dn(y, z) = d(fny, fnz), where
dn is the Riemannian distance on Wu(fnx) induced by the Riemannian metric
on M.

Lemma 5.8 (Volume lemma). For all ϵ > 0 there is Cϵ > 0, such that for all
x ∈M and n ≥ 0

C−1
ϵ

Jufn(x)
≤ m

(
Bun(x, ϵ)

)
≤ Cϵ
Jufn(x)

, (68)

where m denotes the volume measure on Wu
ϵ (x), and J

ufn(x) = |det df(x)Eu
x
|.

Proof. Since the Wu
ϵ are C1 embedded manifolds, we have for sufficiently small

ϵ and for all x
m
(
Bu(x, ϵ)

)
≃ ϵdimEu

. (69)

Let x ∈ M, and consider the the restriction of f to the unstable dynamical
ball un(x, ϵ), f : Bun(x, ϵ) → Bu(fnx, ϵ). Applying the change of variable formulas
we get

m
(
Bu(fnx, ϵ)

)
=

∫
Bu

n(x,ϵ)

Jufn(y)dm(y).

By the distortion lemma 5.6, there is Cd such that for all y ∈ Bun(x, ϵ) we have

C−1
d Jufn(y) ≤ Jufn(x) ≤ CdJ

ufn(y).

Integrating with respect to y we get

C−1
d ϵdimEu

≤ Jufn(x)m
(
Bun(x, ϵ)

)
≤ Cdϵ

dimEu

, (70)

which finishes the proof of the lemma.

Consider τ1 = Wu
ϵ (x1), τ2 = Wu

ϵ (x2), where x2 ∈ W s
ϵ (x1), and denote by

h = hτ1,τ2 the holonomy from τ1 to τ2.

Lemma 5.9. There is a constant C ′
ϵ > 0 such that for any x ∈ τ1 and n ≥ 0

we have

C ′−1
ϵ m

(
Bun(x, ϵ)

)
≤ m

(
hτ1,τ2

(
Bun(x, ϵ)

))
≤ C ′

ϵm
(
Bun(x, ϵ)

)
. (71)
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Proof. Let x ∈ τ1, y ∈ Bun(x, ϵ) and x
′ = h(x), y′ = h(y). Since the holonomy is

α-Hölder for some α > 0, and constant C = C(h, ϵ) we have

dn(x
′, y′) ≤ Cdn(x, y)

α,

hence h
(
Bun(x, ϵ)

)
⊂ Bun(x

′, Cϵα), which implies that

m
(
h
(
Bun(x, ϵ)

))
≤ m

(
Bun(x

′, Cϵα)
)

≤ Cϵα

Jufn(x′)

≤ CϵαCd
Jufn(x)

≤ CϵCαCd ·m
(
Bun(x, ϵ)

)
,

where the constant Cd is the constant coming from lemma 5.6, Cϵ and Cα are
given by lemma 5.8. We do the same argument for h−1 = hτ2,τ1 , to deduce the
other inequality, which finishes the proof.

Since the constant C ′
ϵ does not depend on n, and that f restricted to τ1 is

expanding, we can make the dynamical balls sufficiently small by taking n big
enough. So the set B of dynamical balls in τ1 generates the open sets of τ1. To
prove that the holonomy is absolutely continuous, it is enough to prove that the
volume of small balls does not distort much. To do this we need the Besicovitch
covering lemma.

Lemma 5.10. There is Cl = Cl(ϵ) such that for any ball B in τ1, we have

C−1
l m(B) ≤ m

(
h(B)

)
≤ Clm(B). (72)

Proof. Let B be a ball of small radius δ < ϵ in τ1, and cover it by dynamical
balls of depth n, i.e B ⊂

⋃
i∈I

Bun(xi, ϵ), and xi ∈ B. By definition of dynamical

balls we have

fn(B) ⊂
⋃
i∈I

B(fnxi, ϵ). (73)

Applying Besicovitch covering lemma (see Appendix) to (73), we can find a sub-
sequence (xji )i,j of (xi)i such that B ⊂

⋃
i,j

Bun(x
j
i , ϵ), the j varies in {1, 2, ...,K},

where K is universal and depends only on the dimension of Eu, and for j ̸= j′,
we have for all i, i′

Bun(x
j
i , ϵ) ∩Bun(x

j′

i′ , ϵ) = ∅.

Using subadditivity of the measure m we get

m(B) ≤ m
(⋃
i,j

Bun(x
j
i , ϵ)

)
≤
∑
i,j

m
(
Bun(x

j
i , ϵ)

)
, (74)
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and
m
(
h(B)

)
≤ m

(⋃
i,j

h
(
Bun(x

j
i , ϵ)

))
≤
∑
i,j

m
(
h
(
Bun(x

j
i , ϵ)

))
. (75)

The element of the sequence (xji ) that lies in ∂B(λ−ϵ)n (the (λ− ϵ)n neigh-
borhood of the boundary of B,) form a set Zn that does not contribute a lot to
the volume of

⋃
i,j

Bun(x
j
i , ϵ), because the radius of B is small, so the Riemannian

metric on B does not vary a lot. In other words m
( ⋃
xj
i∈Zn

Bun(x
j
i , ϵ)

)
= ϵn, and

ϵn converges to 0 as n goes ∞.
So we deduce that

1

K

∑
i,j

m
(
Bun(x

j
i , ϵ)

)
−K

∑
xj
i∈Zn

m
(
Bun(x

j
i , ϵ)

)
≤ m(B). (76)

Using lemma 5.9, we get also

1

K · C ′
ϵ

m
(
h
(
Bun(x

j
i )
))

−K · C ′
ϵ

∑
xj
i∈Zn

m
(
h
(
Bun(x

j
i )
))

≤ m
(
h(B)

)
. (77)

Using lemma 5.9 again, and (74) and (77) we deduce that

m
(
h(B)

)
≥ 1(

KC ′
ϵ

)2m(B)−
(
KC ′

ϵ

)2
ϵn, (78)

taking n to infinity finishes the proof.

Remark 5.11. We prove in the same way that if y ∈ W s
ϵ (x), then there is a

constant Cd such that for all n ∈ N we have

C−1
d ≤ Jufn(x)

Jufn(y)
≤ Cd, (79)

where we recall that Jufn(x) = |det dfn(x)|Eu
x
|.

5.4 Ergodicity of the SRB measure

Let f : M → M be a C1+Dini Anosov and µ a SRB measure. If f is transitive,
then using Hopf argument, we can prove that the measure µ is ergodic. The
Hopf argument consists of two steps; the first one is to prove that if ϕ :M → R
is measurable f - invariant function, then it is constant on stable and unstable
leaves modµ0. The second step is to use the absolute continuity of the holonomy
maps to deduce that ϕ :M → R is constant. The following lemma is taken from
[BS02] lemma 6.3.2.

Lemma 5.12. Let ϕ :M → R be an f -invariant measurable function. Then ϕ
is constant modulo µ on stable and unstable sets, i.e there is a null set N for µ
such that ϕ is constant on W s(x) \N and on Wu(x) \N for every x ∈M \N.
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Remark 5.13. If f preserves a measure equivalent to the Lebesgue measure,
then for all h ∈ L2(M), any weak* limit of (h ◦ fn)n is constant when restricted
to global stable (unstable) leaf (see [Cou16] Theorem 4.1).

Now using the absolute continuity of the holonomy maps we get

Lemma 5.14. Let ϕ : M → R be an f -invariant measurable function, then ϕ
is constant modulo µ.

Proof. Since f is transitive, each global stable leaf is dense inM , so it is enough
to prove that ϕ is constant in some small rectangle R.

R Wu

W s

τ

Figure 5: A rectangle foliated by local stable leaves

R is foliated by local unstable leaves (see figure 5). Let τ be transversal to the
unstable foliation in R, then disintegrate the measure µ in this rectangle along
unstable leaves, µ(E) =

∫
τ
ξy(E)dν(y). Since µ is SRB, for ν-a.e y ∈ τ, ξy <<

LebWu
loc(y)

. Using the previous lemma, we have for ν-a.e y ∈ τ, ϕ is constant in
Wu
loc(y) ∩ R \N, moreover, for ν-a.e y ∈ τ, ξy (N ∩Wu

loc(y)) = 0. Consider two
generic points y1, y2 of ν. Since ξyi(N∩Wu

loc(yi)) = 0 there are xi ∈Wu
loc(yi)\N ,

with x0 ∈W s
loc(x1)\N, so we have ϕ(y0) = ϕ(x0) = ϕ(x1) = ϕ(y1), which proves

that ϕ is constant on R modulo µ, hence the measure µ is ergodic.

Remark 5.15. If f is a C1 volume preserving Anosov diffeomorphism, then it
is an open problem whether the volume is ergodic or not.

5.4.1 Physicality of the SRB measure

Using the absolute continuity of the holonomy maps, we prove that in the case
of an attractor the SRB measure is physical.

Proposition 5.16. Let f : M → M be an Anosov, then the SRB measure is
physical.

Proof. Denote the SRB measure by µ. Using Smale decomposition theorem, we
may assume without loss of generality that f is transitive, so the SRB measure is
ergodic, in particular, for µ-a-e x ∈M, x ∈ B(µ). Using the fact that µ is SRB,
we can find a local unstable leaf Wu

ϵ (x) such that Wu
ϵ (x) ∩ B(µ) has positive

measure with respect to LebWu
ϵ (x). Notice that if y ∈ W s(x) and x ∈ B(µ),

then y ∈ B(µ). Finally, using the absolute continuity of the holonomy map, we
deduce that B(µ) has positive Lebesgue measure.
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6 Decay of correlations for C1+α Anosov diffeo-
morphisms

The classical approach to prove decay of correlations, is either by using the cod-
ing (see [Bow75a]) or the tool developed by Young [You98] now called Young
towers. In this dissertation, we use another approach using optimal transport
and standard pairs. The idea of the proof is similar to the proof of Proposition
A1 page 139 in [CD09]. Roughly speaking, if we consider an Anosov diffeo-
morphism f and two standard pairs (Wi, ρi), then we transport the mass from
W1 to W2 along stable leaves. This allows us to define a nice distance between
measures induced by standard pairs (µi =

∫
Wi
ρi dLebWi

) which induces the

usual weak* topology, and is contracting under the action of f. So we deduce
in particular that (fn∗ µ1)n converges exponentially fast to the SRB measure µ,
which gives the decay of correlations.

First, we recall the definition of standard pairs introduced by Dolgopyat (see
for example [CDP16]). Then, we will define a special distance between measures
induced by standard pairs using optimal transport (see the appendix for a brief
introduction, or [Vil09] for more detailed introduction to the subject), and prove
that it is contracting under the action of f.

In this section we consider a transitive Anosov diffeomorphism f of class
C1+α, and we fix a Markov partition

⋃
i

Ri with diameter less than a small

ϵ > 0.

6.0.1 Standard pairs

Let W be a local unstable leaf which contains a ball of radius ϵ and is contained
in a ball of radius 2ϵ, we say that it fully crosses Ri (or an admissible manifold)
if Ri ∩W =Wu

2ϵ(x) ∩Ri for some x ∈ Ri ∩W.
Assume that W ⊂ Ri for some i, and W fully crosses Ri, and let ρ : W →

(0,+∞) be a L1 density. We will call (W,ρ) a standard pair.
Now fix L > 0, then the space of standard pairs

RL :=

{
(W,ρ)

∣∣∣ (W,ρ) is a standard pair , ρ ∈ Cα(W, [
1

L
,L]), |ρ|α ≤ L

}
(80)

is compact in the natural product topology. A standard pair determines a
measure Ψ(W,ρ) on M in the following way:

Ψ(W,ρ)(E) :=

∫
W∩E

ρ dLebW . (81)

Moreover, each measure η on RL determines a measure Φ(η) on M given by

Φ(η)(E) :=

∫
RL

Ψ(W,ρ)(E) dη(W,ρ). (82)
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Remark 6.1. This definition of standard pairs differs from the one given in
[CLP17, CDP16], they fixed a cone field around the unstable distribution, and
took local manifolds tangent to this cone field, in particular local unstable leaves
satisfies that.

Consider the map Φ : M≤1(RL) → M(M), where M≤1(RL) is the space
of measures on RL with total weight less than 1, then Φ(M≤1(RL)) := ML is
compact with respect to the weak * topology. A measure µ is called admissible
if it has a the form Ψ(W,ρ).

Lemma 6.2. The space ML is compact.

Proof. Using (81) and (82), we deduce that Φ is continuous, so to prove that
ML is compact, it is enough to prove that M≤1(RL) is compact. Since the
space Cα(W, [ 1L , L]) with holder constant less than L is compact, and M is
compact, we deduce that M≤1(RL) is compact.

Now, we want f to act on ML by pushing forward measures, and a fixed
point for this action would be an invariant SRB measure for f. In our setting,
f acts on ML, more precisely we have

Lemma 6.3. There is L > 0, such that for all standard pair (W,ρ) ∈ RL, and
n ∈ N∗ there is kn ∈ N such that

fn∗ Ψ(W,ρ) =

kn∑
i=0

aiΨ(Wi, ρ
′
i), (83)

where (Wi, ρ
′
i) ∈ RL for all i, and

kn∑
k=0

ai = 1.

Proof. Let n ∈ N∗. Using Markov property (see 4.14) fn(W ) can be covered
by local unstable manifolds that intersect only at the boundary (which have 0
Lebesgue measure), so we can write

fn∗ Ψ(W,ρ) =

kn∑
i=0

aiΨ(Wi, ρi),

where ai = f∗Ψ(W,ρ)(Wi), and ρi are L
1 densities. Now, to finish the proof

of the lemma, we have to prove that for all i, ρi is α-Hölder continuous with
Hölder constant less than L.

Denote by ρ̃ the density of fn∗ Ψ(W,ρ) on fn(W ) with respect to the Lebesgue
measure on fn(W ), then using the change of variable formula we get

ρ̃(x) =
ρ ◦ f−n(x)

Jacufn ◦ f−n(x)
= Jacsf−n(x) · ρ ◦ f−n(x), ∀x ∈ fn(W ). (84)

The density ρ satisfies

ρ(x)

ρ(y)
≤ eLd(x,y)

α

, ∀x, y ∈W, (85)
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and using the fact that the Jacobian is α-Hölder

Jacsf−n(x)

Jacsf−n(y)
≤ eCdd(x,y)

α

, ∀x, y ∈ fn(W ), (86)

we deduce that

ρ̃(x)

ρ̃(y)
=
Jacsf−n(x)

Jacsf−n(y)
· ρ(f

−nx)

ρ(f−ny)

≤ eLd(f
−nx,f−ny)α · eCdd(x,y)

α

≤ e(Lλ
n+Cd)d(x,y)

α

, (87)

so choosing L large enough, we get for all n ∈ N∗, Lλn + Cd ≤ L which implies
that ρ̃ is α-Hölder with constant less than L. For each i put ρ′i =

1
ai
ρ̃|Wi

, it re-

mains to prove that ρ′i ∈ [ 1L , L]. Assume that this is not the case, i.e there is some
x0 ∈ Wi such that ρ′(x0) > L, which is equivalent to ρ̃(x0) > L

∫
Wi
ρ̃ dLebWi .

Using (87), we get

L

∫
Wi

ρ̃ dLebWi
< ρ̃(x0) ≤ e(Lλ

n+Cd)ϵρ̃(x), ∀x ∈Wi, (88)

integrating with respect to x we get

LϵdimE
u

∫
Wi

ρ̃ dLebWi ≲ e(Lλ
n+Cd)

∫
Wi

ρ̃ dLebWi , (89)

but for some N ∈ N, and for all n > N, we have LϵdimE
u ≥ e(Lλ

n+Cd), contra-
diction. We prove similarly that ρ′i ≥ 1

L .

Now to couple two measures given by standard pairs, we make the standard
pair ”facing each other” by taking their image by some iterate of f , and wait
until part of them land on the same rectangle. Then we use the holonomy map
to transport an amount of mass uniformly bounded from below. More precisely,
fix a rectangle Rj then we have

Lemma 6.4. There is N ∈ N∗ and τ0 = τ0(ϵ) such that for all admissible
manifold W1,W2 and all n ≥ N we have Leb(Wi ∩ f−N (Rj)) ≥ τ0.

Proof. We prove that if we fix two admissible manifolds W1,W2, then we can
find suchN and τ0 satisfying the condition of the lemma, then using the fact that
admissible manifolds form a compact space, we can choose N and τ0 uniform,
i.e they do not depend on W1,W2.

Fix two admissible manifolds W1,W2, and ci ∈ Wi for i ∈ {0, 1}. De-
note by Ui = [W1,W

s
ϵ (ci)], then by mixing of the SRB measure µ, we have

µ (Ui ∩ f−n(Rj)) → µ(Ui)µ(Rj). We deduce that, there is N ∈ N∗, τ0 = τ0(ϵ)
such that for all n ≥ N , µ(Ui ∩ f−n(Rj)) ≥ 2τ0. Since the measure µ is SRB,
there is yi ∈W s

ϵ (ci) such that Leb(Wu
ϵ (yi)∩f−n(Rj)) >

3
2τ0. Finally, using the
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fact the holonomy is absolutely continuous with Jacobian close to 1, we deduce
that Leb(Wi ∩ f−n(R)) ≥ τ0. Notice that if W ′

1 is sufficiently close to W1 then
the same N, τ0 work withW ′

1, so using compacity of admissible manifold finishes
the proof of the lemma.

Lemma 6.5. Fix a rectangle R, then there is τ0 = τ0(ϵ) > 0 such that for
all (W1, ρ1), (W2, ρ2) ∈ RL with W1,W2 in R and fully cross it, there exist
γ ∈ M1(M ×M) and densities ρ′i on Wi such that

• γ is concentrated on ∆s
ϵ := {(x, y) ∈M ×M | ds(x, y) ≤ ϵ} ,

• Ψ(Wi, ρi) = τ0πi∗γ + (1− τ0)ρ
′
iLebWi

,

• (Wi, ρ
′
i) ∈ R2L.

Proof. Consider the measure γ ∈ M(M ×M), such that π1∗γ = 1−ϵ
2L LebW1

and
is supported on the graph of the holonomy map h :W1 →W2. We have

π2∗γ = h∗Ψ(W1, ρ1) =
1

Jac h ◦ h−1
dLebW2

= Jac h−1. (90)

Since Jac h−1 is sufficiently close to 1 when ϵ > 0 is close to 0, the density of
π2∗γ is less than 1

2L and Hölder continuous with Hölder constant less than L (L
is sufficiently large). We deduce that Ψ(W, 2ρ2)−π2∗γ is a positive measure with
2L-Hölder density, with values in [ 1

2L , 2L], the same is true for Ψ(W1, ρ1)− 1−ϵ
2L ,

which finishes the proof.

In fact we can prove this lemma without taking the admissible manifold to
be in the same rectangle, and this is the main tool to prove that the action of
f on ML is contracting.

W1

W2

R

Figure 6:

Fix L and N as in the previous lemmas, then we have

Lemma 6.6. There is τ = τ(ϵ, L,N) > 0 such that for all standard pairs
(W1, ρ1), (W2, ρ2) ∈ RL, there exist γ ∈ M1(M ×M) and densities ρ′i on Wi

such that

• γ is supported on ∆s
N :=

{
(x, y) ∈M ×M | ds(x, y) ≤ 1

λN

}
,

• Ψ(Wi, ρi) = τπi∗γ + (1− τ)ρ′iLebWi
,

• (Wi, ρ
′
i) ∈ R2L.
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Proof. Using lemma 6.4, there are τ0 and N ∈ N∗ such that Leb(Ui) > τ0, where
Ui = Wi ∩ f−N (Rj), moreover fN (Ui) consists of admissible manifolds in Rj

that fully cross it (see figure 7). Denote by (W1,k)k∈I1 and (W2,k)k∈I2 this two
families of admissible manifolds. Consider the standard pairs (Wi,k, ρ

′
k) ∈ RL

given by lemma 6.3. Then we have∑
k∈Ii

ak,i ≥ τ0, (91)

where ak,i are given by lemma 6.3. To prove the two first points of the lemma,
we couple the measures µi = Φ(ηi) as in lemma 6.5, where ηi is given by

ηi =
∑
k∈Ii

ak,iδΨ(Wk,i,ρ′k,i)
. (92)

fN (W1)

R

Figure 7: Pushing admissible manifold by f

Lemma 6.7. Fix τ0 as in the previous lemmas, then there is θ ∈ (0, 1) and
C > 0, such that for any admissibile manifold W and a rectangle R of radius ϵ
we have for all n ∈ N

LebW (W \An) ≤ Cθn, (93)

where An =
n⋃
k=1

W ∩ f−nR.

Proof. We proved that there is n0 ∈ N∗ such that for any admissible manifold
W and a rectangle R, we have LebW (W ∩f−n0R) > τ0. Notice that fn0(W ) is a
union of disjoint admissible manifolds (Wj)j , and using the previous argument,
eachWj contains a mass τ0 that will be mapped in R by fn0 , in particular there
is a proportion τ0 of fn0(W ) \ R that will be mapped in R by fn0 , so we have
λ
(
W ∩ f−2n0R

)
> τ0(1− τ0). Repeating the some argument we get

LebW
(
W ∩ f−kn0R

)
> uk, ∀k ∈ N∗, (94)

where (un)n is the sequence defined by u1 = τ0, un+1 = τ0(1 − Sn) and Sn =
u1 + · · ·un.

A simple recurrence shows that Sn = 1− (1− τ0)
n, so we have for all n ∈ N

LebW
(
W \An0n

)
≤ 1− Sn = (1− τ0)

n. (95)

Taking θ = n0
√
1− τ0 and C ≥ 1

(1−τ0)n0
finishes the proof.
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Remark 6.8. We proved in particular that

LebW
(
{x ∈W | ds(x,R) ≥ λ−n}

)
≤ Cθn, (96)

where ds is the distance along the stable leaf containing x.

Now using these lemmas, we deduce that the Wasserstein distance between
measures given by standard pairs converges exponentially to the same limit, in
other words we have

Proposition 6.9. There are α = α(τ,N) ∈ (0, 1) and C = C(τ, λ,N, α) such
that for all ϵ0 > 0, and µ, ν ∈ Ψ(RL),∀n ≥ 0 we have

Wα
1 (f

n
∗ µ, f

n
∗ ν) ≤ (1− ϵ0)Cλ

αn + ϵ0d
α
M , (97)

where dM is the diameter of the manifold M. We have in particular

Wα
1 (f

n
∗ µ, f

n
∗ ν) ≤ Cλαn. (98)

Proof. To control the Wasserstein distance, we need to construct for any µ, ν ∈
Ψ(R) a special coupling γ ∈ Γ(µ, ν) satisfying

i) γ = (1− ϵ0)γ
s
ϵ0 + ϵ0γϵ0 ,

ii) for γsϵ0-a.e (x, y), y ∈W s(x).

Let (W1, ρ1), (W2, ρ2) ∈ RL, and µ1, µ2 the corresponding measures. Denote by
γ1 the measure given by lemma 6.6, and by r11, r

2
1 the probability measures such

that
µi = τπi∗γ1 + (1− τ)ri1.

fN∗ r
i
1 is a linear combination of elements of RL, so using lemma 6.6 again,

we can find γ̃2 ∈ M(M ×M) such that

fN∗ r
i
1 = τπi∗γ̃2 + (1− τ)ri2.

We take γ2 = f−N∗ γ̃, then by definition γ2 satisfies ii).
We define inductively rin+1 and γ̃n+1(γ̃n+1 is chosen) by

fN∗ r
i
n = τπi∗γ̃n+1 + (1− τ)rin+1,

and we put γn+1 = f−nN∗ γ̃n+1.
Define the sequence (un)n by u1 = τ, un+1 = τ(1 − Sn) where Sn = u1 +

· · ·+ un, a simple computation shows that un = τ(1− τ)n. Consider a large m
such that Sm > 1− ϵ0, and consider the measure

γ = u1γ1 + u2γ2 + · · ·+ umγm + ϵ0γϵ0

where γϵ0 is any measure such that πi∗γ = µi. The measure
m∑
i=1

uiγi satisfies

property ii), so taking γsϵ0 =
∑
i uiγi gives us the coupling satisfying i) and ii).
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Let α ∈ (0, 1), then we have

Wα
1 (f

n
∗ µ, f

n
∗ ν) ≤

∫
d(x, y)α d

(
fn∗
(
(1− ϵ0)γ

s
ϵ0 + ϵ0γϵ0

))
= (1− ϵ0)

∫
d(x, y)α d(fn∗ γ

s
ϵ0) + ϵ0

∫
d(x, y)α d(fn∗ γϵ0)

= (1− ϵ0)

∫
d(fnx, fny)α dγsϵ0 + ϵ0

∫
d(fnx, fny)α dγϵ0

≤ (1− ϵ0)

∫
ds(f

nx, fny)α dγsϵ0 + ϵ0d
α
M

≤ (1− ϵ0)λ
αn

∫
ds(x, y)

α dγsϵ0 + ϵ0d
α
M .

It remains to prove that
∫
ds(x, y)

α dγsϵ0 is finite and does not depend on ϵ0 and
n for a suitable choice of α.

By definition, the measure γk is supported on{
(x, y) ∈M ×M , ds(x, y) ≤

1

λkN

}
,

so we have ∫
ds(x, y)

α dγsϵ0 =
∑
k

uk

∫
ds(x, y) dγk

≤
∑
k

(1− τ)kλ−kNα

=

m∑
k=1

(
(1− τ)λ−Nα

)k
.

Choosing α small enough we have (1−τ)λ−Nα < 1, so there is C = C(τ, λ,N, α)
such that

∫
ds(x, y)

α dγsϵ0 ≤ C, we have in particular for all n and ϵ0 > 0

Wα
1 (f

n
∗ µ, f

n
∗ ν) ≤ (1− ϵ0)Cλ

αn + ϵ0d
α
M ,

which finishes the proof.

Now using a standard argument in optimal transport (see theorem 7.15), we
deduce that

Theorem 6.10. For all µ, ν ∈ ML and n ∈ N∗ we have

Wα
1 (f

n
∗ µ, f

n
∗ ν) ≤ Cλαn. (99)
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Proof. Let µ, ν ∈ ML, and let η be a measure on RL such that Φ(η) = µ.
Assume that ν is given by a single standard pair, then we have for all n ∈ N

Wα
1 (f

n
∗ µ, f

n
∗ ν) =Wα

1

( ∫
fn∗ µz dη(z),

∫
fnνz dη(z)

)
≤
∫
Wα

1 (f
n
∗ µz, f

n
∗ ν) dη(z)

≤
∫
Cλαn dη(z)

= Cλαn,

where µz : RL → ML such that µ =
∫
µz dη(z) and νz : RL → ML is constant

and equal to ν. For general ν we use the same argument and the previous
inequality, which finishes the proof.

Corollary 6.11. [Exponential decay of correlations] If f is a C1+α transi-
tive Anosov, then the SRB measure µ has exponential decay of correlations for
Hölder observables, in other words there is θ ∈ (0, 1) such that for all α-Hölder
maps φ,ψ we have:∣∣∣∣∫ φ ψ ◦ fn dµ−

∫
φ dµ

∫
ψ dµ

∣∣∣∣ ≤ Cφ,ψθ
n. (100)

Proof. Consider two Hölder observables φ,ψ. Up to adding a large constant to
φ and then dividing by a normalizing constant, we reduce to the case when
φ > 0 and fµ ∈ ML, and we get

Corµ(φ,ψ ◦ fn) :=
∣∣∣∣∫ φ ψ ◦ fn dµ−

∫
ψ dµ

∣∣∣∣
=

∣∣∣∣∫ ψ dfn∗ (φµ)−
∫
ψ dµ

∣∣∣∣ .
Using Kantorovich duality (see theorem 7.10) for the Wasserstein distance Wα

whose cost function is d(·, ·)α, we deduce that∣∣∣∣∫ ψ dfn∗ (φµ)−
∫
ψ dµ

∣∣∣∣ ≤ CφWα

(
fn∗ (φµ), f

n
∗ µ
)

≤ CφW1

(
fn∗ (φµ), f

n
∗ µ
)α

≤ Cφd
α
Mλ

αn.

Finally, the dependence on φ comes from its normalization, which proves decay
of correlations.

Remark 6.12. We should be able to use this approach without assuming that
the SRB measure exists, and without use of Markov partitions (which is used
here to bypass the technical issue of how to cover the image of a standard pair
by standard pairs), and the difficulty in this case is to prove lemma 6.6. The
interested reader can find an advanced draft to this direction in [BK23].
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7 Appendix

7.1 Covering theorems

Lemma 7.1 (Besicovitch covering theorem). Let E be a subset of RN and let⋃
i∈I

Bi an arbitrary cover of E by balls centered in E. Then there is cN depending

only on the dimension N with the following property:
There are at most cN disjoint countable subsets I1, · · · , IcN of I such that

• j, j′ ∈ Ik ⇒ Bj ∩ Bj′ = ∅,

• E ⊂
cN⋃
i=1

⋃
j∈Ii

Bj .

For a proof, see for example [Mat99].

Remark 7.2. The Besicovitch covering theorem is also true in a C1 Rieman-
nian manifold. The proof in the case of a C2 manifold can be found in [Fed69].

We present another covering theorem, which can be used as an alternative
to Besicovitch covering theorem in a C1 manifold. Let X be a metric space,
with a measure µ, which is finite on bounded subsets of X. Consider a family
F of closed subsets of X.

Definition 7.3. We say that the family F covers a subset A finely, if for all
a ∈ A, and all ϵ > 0, there is B ∈ F such that

a ∈ B ⊂ B(a, ϵ).

Definition 7.4. The family F is said to be µ adequate for A if and only if for
all open set U ⊂ X, there is a countable disjoint subfamily G of F such that⋃

G ⊂ U, and µ
(
U ∩A \

⋃
G
)
= 0.

Definition 7.5. Let δ be a nonnegative bounded function on F and τ > 1. For
S ∈ F , we define its δ, τ enlargement by

Ŝ =
⋃{

F : F ∈ F , F ∩ S ̸= ∅, δ(F ) < τδ(S)
}
.

Theorem 7.6 (Theorem 2.8.7 in [Fed69]). If F covers A finely, δ is a nonneg-
ative bounded function on F , τ > 1, λ > 1 and

µ(Ŝ) < λµ(S), (101)

whenever S ∈ F and Ŝ is the δ, τ enlargement of S, then F is µ adequate for
A.
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Corollary 7.7. Let f be an expanding diffeomorphism of RN . Assume that df
satisfies distortion, i.e for all ϵ > 0, there is Cϵ > 1 such that for all x, y ∈
Bn(x, ϵ)

C−1
ϵ ≤ det dfnx

det dfny
≤ Cϵ.

Then for any open set U in RN , there are (xn)n∈N a sequence in U , and a
sequence (mn)n of integers such that

Leb
(
U \

⋃
n∈N

Bmn
(xn, ϵ)

)
= 0, (102)

and for all n, k ∈ N, and k ̸= n

Bmn(xn, ϵ) ∩Bmk
(xk, ϵ) = ∅.

Proof. Consider the family

F = {Bn(x, ϵ) : x ∈ RN , n ∈ N}.

Define the function δ on F , which associates to Bn(x, ϵ) the value 2−n. Let
µ = LebRN , and take τ = 2. Let U be an open set. Since f is an expanding
diffeomorphism, F covers U finely. It remain to verify that equation (101) is
true for some λ > 1.

Fix a dynamical ball Bn(x, ϵ). Then by definition of δ, B̂n(x, ϵ) consists of
dynamical balls that intersect Bn(x, ϵ), and of the form Bm(·, ϵ) and m ≥ n.
We have fn

(
B̂n(x, ϵ)

)
⊂ B(fnx, 3ϵ). The distortion property implies that for

all n ∈ N and y ∈ B̂n(x, ϵ) ⊂ Bn(x, 3ϵ)

C−1
3ϵ ≤

det dfny
det dfnx

≤ C3ϵ. (103)

Integrating the previous equation with respect to y on B̂n(x, ϵ) we get

C−1
3ϵ µ

(
B̂n(x, ϵ)

)
det dfnx ≤ µ

(
fnB̂n(x, ϵ)

)
≤ µ

(
B(fnx, 3ϵ)

)
. (104)

Using the same argument we get

µ
(
B(fnx, 3ϵ)

)
≤ C3ϵµ

(
Bn(x, ϵ)

)
det dfnx . (105)

We deduce that
µ
(
B̂n(x, ϵ)

)
≤ C2

3ϵµ
(
Bn(x, ϵ)

)
, (106)

so taking λ = C2
3ϵ finishes the proof.
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7.2 Optimal transport

We recall basic definitions about optimal transport, the interested reader can
find more details, motivations and proofs in [Vil09].

Consider a separable completely metrizable topological space X (called a
Polish space), and denote by M(X) the space of probability measures on X.
For µ, ν ∈ M(X), the set Γ(µ, ν) of coupling of µ and ν is the set of measures on
X×X whose elements project to µ (resp ν) on the first (resp second) coordinate.
Γ(µ, ν) is not empty, because it contains µ⊗ν, and is compact (this follows from
Prokhorov’s Theorem).

Optimal transport provides a way to define a distance on the space of prob-
ability measures over X, for µ, ν ∈ M(X) we put:

W1(µ, ν) := inf
γ∈Γ(µ,ν)

∫
d(x, y)dγ(x, y), (107)

Proposition 7.8. W1 is a distance on M(X).

Proof. To prove that W1 is distance, we verify the three axioms of a distance

i. Let µ, ν such that W1(µ, ν) = 0, then there is a coupling γ such that:∫
d(x, y)dγ(x, y) = 0,

(because the set Γ(µ, ν) is compact, so the measure γ is concentrated on
the diagonal of X ×X, which implies that µ = ν.

ii. W1 is symmetric because d is symmetric.

iii. Let µ1, µ2 and µ3 be probabilities measures. Let γ12 (resp γ23) be a
coupling of µ1 and µ2 (resp µ2 and µ3). Disintegrate γij with respect to
µ2, and we define the measure ν on X ×X by:

ν(A) =

∫
γ12y(A)γ23y(A) dµ2(y).

By definition ν is a coupling of µ1 and µ3, and we have:

W1(µ1, µ3) ≤
∫
d(x, z) dν(x, z)

=

∫ (∫
d(x, z)d

(
γ12y(x)γ23y(z)

))
dµ2(y)

≤
∫ (∫

d(x, y) + d(y, z)d
(
γ12y(x)γ23y(z)

))
dµ2(y)

≤
∫
d(·, ·) dγ12 +

∫
d(·, ·) dγ23,

which implies the triangular inequality.
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Remarks 7.9.

• For p ≥ 1, Wp(µ, ν) = inf
γ∈Γ(µ,ν)

( ∫
d(x, y)pdγ(x, y)

)1/p
is also a distance

on the space of probability measures on X.

• When X is compact, the topology given by the distance W1 is the weak*
topology.

• The set Γ(µ, ν) is compact, in particular, the infimum in the definition
of Wasserstein metric is achieved by a coupling γ, and such a coupling is
called an optimal transport plan.

Theorem 7.10 (Kantorovich duality).

W1(µ, ν) := inf
γ∈Γ(µ,ν)

∫
d(x, y) dγ(x, y) = sup

∥f∥Lip≤1

µ(f)− ν(f). (108)

Proposition 7.11. Let f : M → M be a C1 map of a compact Riemannian
manifold M, then there is C > 0 such that for all µ, ν ∈ M(M)

W1(f∗µ, f∗ν) ≤ CW1(µ, ν). (109)

Proof. This follows from the definition, indeed we have

W1(f∗µ, f∗ν) = inf
γ∈Γ(f∗µ,f∗ν)

∫
d(x, y)dγ(x, y)

≤ inf
(f,f)∗γ, γ∈Γ(µ,ν)

∫
d(x, y)d(f, f)∗γ(x, y)

= inf
γ∈Γ(µ,ν)

∫
d(fx, fy)dγ(x, y)

≤ inf
γ∈Γ(µ,ν)

∫
C · d(x, y)dγ(x, y) = CW1(µ, ν).

7.2.1 Some examples of couplings

Example 7.12. Let X = [0, 1] with the usual Euclidean metric. Let x, y ∈ [0, 1],

then W 1(δx, δy) = d(x, y). More generally if µ =
n∑
k=1

akδxk
and ν =

n∑
k=1

bkδyk ,

then we have

W1(µ, ν) ≤
(
2 +

n∑
k=1

|ak − bk|
)
max d(xk, yk).
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Example 7.13. Consider the Lebesgue measure λ on [0, 1], and let µn =

1
2n

2n∑
k=1

δ k
2n
, then

W1(λ, µn) ≤
1

2n
.

In fact, the set of finite combination of Dirac measures is dense in the space of
probability measures on X.

Example 7.14. If µ and ν are two probability measures on a Polish space X,
then there exist a measurable bijection T : X → X such that T∗µ = ν and
T−1
∗ ν = µ. In that case, the measure γ = (Id, T )∗µ is a coupling of µ and
ν which is supported on the graph of T. This coupling is called deterministic
coupling.

7.2.2 Convexity of optimal cost

Theorem 7.15. Let (Ω,P) be a probability space, and θ 7→ µθ, θ 7→ νθ be two
measurable functions defined on Ω with values on probability measures of M.
Then we have

W1

(∫
Ω

µθ dP(θ)),
∫
Ω

νθ dP(θ)
)
≤
∫
W1(µθ, νθ) dP(θ). (110)

Corollary 7.16. If two probability measures µ and ν have a common mass
τ ∈ (0, 1) i.e there are probability measures λ, µ0 and ν0 such that

µ = τλ+ (1− τ)µ0

ν = τλ+ (1− τ)ν0,

then W1(µ, ν) ≤ (1− τ)W1(µ0, ν0).

7.2.3 Total variation

Let µ and ν be two probability measures, the total variation between µ and ν
is given by

∥µ− ν∥TV := sup
∥φ∥∞

|µ(φ)− ν(φ)| = sup
B∈B

|µ(B)− ν(B)|. (111)

Using Kantorovich duality, it also can be seen as the Wasserstein distance with
the cost 1x̸=y, in other words

∥µ− ν∥TV = inf
γ∈Γ(µ,ν)

∫
1x ̸=y dγ(x, y).

When X is bounded W1 is controlled by the total variation.

Proposition 7.17. If X is bounded, then for all probability measures µ and ν
we have

W1(µ, ν) ≤ diam(X)∥µ− ν∥TV .
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Proof. We have for all γ ∈ Γ(µ, ν)

W1(µ, ν) ≤
∫
d(x, y) dγ(x, y) ≤

∫
diam(X)1x ̸=ydγ(x, y)

≤ diam(X)

∫
1x̸=y dγ(x, y).
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tinue invariante. (an example of a piecewise C1-dilation transforma-
tion without an absolutely continuous invariant measure of probabil-
ity). Ergodic Theory Dyn. Syst., 9(1):101–113, 1989.

[HY95] Huyi Hu and Lai-Sang Young. Nonexistence of SBR measures for
some diffeomorphisms that are ‘almost Anosov’. Ergodic Theory Dyn.
Syst., 15(1):67–76, 1995.

71



[Kat80] A. Katok. Lyapunov exponents, entropy and periodic orbits for dif-
feomorphisms. Publications Mathématiques de l’IHÉS, 51:137–173,
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[Qiu11] Hao Qiu. Existence and uniqueness of SRB measure on C1 generic
hyperbolic attractors. Communications in mathematical physics,
302(2):345–357, 2011.

[Qua96] A. N. Quas. Non-ergodicity for C1 expanding maps and g-measures.
Ergodic Theory and Dynamical Systems, 16(3):531–543, 1996.

72



[Qua99] A. N. Quas. Most expanding maps have no absolutely continuous
invariant measure. Stud. Math., 134(1):69–78, 1999.

[RY80] Clark Robinson and Lai Sang Young. Nonabsolutely continuous foli-
ations for an Anosov diffeomorphism. Invent. Math., 61(2):159–176,
1980.

[Shu70] M. Shub. Expanding maps. Global Analysis, Proc. Sympos. Pure
Math. 14, 273-276 (1970)., 1970.

[SS85] M. Shub and D. Sullivan. Expanding endomorphisms of the circle re-
visited. Ergodic Theory and Dynamical Systems, 5(2):285–289, 1985.

[Vil09] C. Villani. Optimal transport: old and new, volume 338. Springer,
2009.

[Wal75] P. Walters. Ruelle’s operator theorem and g-measures. Trans. Am.
Math. Soc., 214:375–387, 1975.

[Wal00] P. Walters. An introduction to ergodic theory, volume 79. Springer
Science & Business Media, 2000.

[Yoc95] J. C. Yoccoz. Introduction to hyperbolic dynamics. In Real and
complex dynamical systems, pages 265–291. Springer, 1995.

[You98] Lai-Sang Young. Statistical properties of dynamical systems with
some hyperbolicity. Annals of Mathematics, pages 585–650, 1998.

[You02] L-S Young. What are SRB measures, and which dynamical systems
have them? Journal of Statistical Physics, 108(5):733–754, 2002.

73


