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Abstract
ZAKARIA OUARAS

Parabolic Hitchin connection

Let C/S be a smooth family of projective complex curves of genus g > 2 parameterized
by a complex variety S and take a divisor on C of relative degree N given by N disjoint
sections of C/S. For a fixed parabolic type a, = (k, @, m) we associate S.MZ%(r, (4, 0) the
relative moduli space of parabolic rank-r vector bundles of parabolic type a, with fixed
determinant § € Pic?(C/S). This moduli space is equipped with a polarization given by
©par the parabolic determinant line bundle (which depends on the parabolic type o).

In this dissertation we study the existence of a projective connection, the so called
Hitchin connection on the pushforward of ©,,, to S with algebro-geometric techniques.
The main tool is the notion of Heat operators in algebraic geometry introduced by van
Geemen and de Jong. We take the quadratic part of the parabolic Hitchin system, we
call parabolic symbol (which depends only on the quasi-parabolic type 7 and not on the
weights @). We prove that it is invariant under Hecke modifications and that it satisfies
the van Geemen-de Jong criterion for the existence of a heat operator with this symbol.
Thus we obtain a projective connection, which turns out to be flat.

To do this we define two Atiyah-type exact sequences in the parabolic context that al-
low us to prove a deformation theorem for marked curves equipped with a quasi-parabolic
vector bundle. Hence we get a factorisation of the Kodaira-Spencer map of the family of
moduli spaces SMZ%(T, a4, 0) along the Kodaira-Spencer map of the family of marked
curves C/S and a description of the Atiyah class of the pullbacks of the determinant line
bundles under the forgetful maps to the moduli space SUc¢/5(r, *) of semi-stable rank-r vec-
tor bundles with fixed determinant =. The key ingredient to conclude is a decomposition of
the parabolic determinant bundle ©,,, and of the canonical bundle over the moduli space

SMejg(r, a, 0).

Key Words: Parabolic vector bundles, Filtered vector bundles, Moduli spaces, Determi-
nant parabolic line bundle, Heat operator, Hitchin connection.



Résumé

Connexion de Hitchin parabolique

Soit C/S une famille lisse de courbes projectives complexes de genre g = 2 paramétrées
par une variété complexe S et prenons un diviseur sur C de degré relatif N, donné par N
sections différentes de la famille C/S. Pour un type parabolique o, = (k,d,m) fixé, on
considere SMZ‘;;(T, (v, ) Pespace de modules relatif des fibrés vectoriels paraboliques de
rang-r de type parabolique o, et de déterminant fixe 6 € Pic(C/S). Cet espace de modules
est muni d’une polarisation donnée par O,,, le fibré parabolique déterminant (dépendant
du type parabolique a).

Dans cette these nous étudions l'existence d’une connexion projective que nous ap-
pelons la connexion de Hitchin sur I'image direct de O, sur S avec des techniques
algébro-géométrique. L’outil principal est la notion d’opérateur de la Chaleur en géométrie
algébrique introduite par van Geemen-de Jong. On prend la partie quadratique du systeme
de Hitchin parabolique pp.,, que 'on appelle le symbole parabolique (qui ne dépend que
du type quasi-parabolique 7 et non des poids @). Nous prouvons qu’il est invariant sous
les modifications de Hecke et qu’il satisfait le critere de van Geemen et de Jong, donc il se
releve a un opérateur de la chaleur a valeurs dans ©,,, et de symbole p,,,. Donc on obtient
une connexion projective sur I'image direct de ©,,, sur S, qui s’avere étre une connexion
plate.

Pour ce faire nous définissons dans le contexte parabolique deux suites exacte de type
Atiyah, qui nous permettent de démontrer un théoreme de déformation pour des courbes
marquées munies d’un fibré vectoriel quasi-parabolique. On obtient donc une factorisation
du morphisme de Kodaira-Spencer de la famille des espaces de modules SMZ%(T, Qy,0) le
long du Kodaira-Spencer de la famille des courbes marquées C/S et une description de la
classe d’Atiyah des pull-backs des fibrés déterminants sous les applications d’oubli vers les
espaces des modules SU¢/s(r, *) de fibrés vectoriels semi-stables de rang-r et de déterminant
fixe . L’ingrédient clef pour conclure est la décomposition du fibré déterminant parabolique

Opar et du fibré canonique sur I'espace de modules SMZ%(T, iy, 0).

Mots-clefs: Fibrés paraboliques, Fibrés filtrés, Espaces de modules, Fibrés déterminants
parabolique, Opérateur de la chaleur, Connexion de Hitchin.
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Introduction

The main object of study of this thesis is the Hitchin connection on the sheaf of non-
abelian theta functions on a family of smooth projective curves. In this manuscript we will
extend Hitchin’s construction of the connection to the sheaf of parabolic non-abelian theta
functions on a family of marked curves.

In the first part of this introduction we start with recalling Hitchin’s original work
and present in chronological order the main contributions leading to an algebro-geometric
construction of Hitchin’s connection for parabolic bundles.

In a second part we will outline a new approach based on an interpretation of parabolic
bundles as R-filtered bundles and a thorough study of the Picard group of the moduli space
of parabolic bundles.

Part 1

I-1) Hitchin’s original construction: Hitchin in [Hit90a] constructed a projective
flat connection in the context of geometric quantization, motivated by the invariant of
3-manifolds introduced in Witten [Wit89] in the study of quantum Chern-Simons theory,
which can be seen as a vector space V' canonically associated to a closed topological surface
X, a compact Lie group GG and an integer k, called the level. The vector space V is related
to the geometric quantization of a (real) symplectic manifold M. For a given Lie group
G one associates the irreducible representations of the fundamental group m;(X) into G
modulo conjugation

HOI’HZ'TT (7'('1 (X), G) /G

which is canonically a symplectic manifold (M,w) by the Atiyah-Bott-Goldman form
[AB83]. Hitchin quantizes this manifold with a Ké&hler polarization since a conformal
structure on the surface X induces a complex structure on M, hence a Kahler polarisa-
tion. By the Narasimhan-Seshadri Theorem M is identified with the moduli space of stable
holomorphic G®-bundles ° over the Riemann surface C' = (X, J) and for each Kihler po-
larization the vector space V' (defined up to a scalar factor) can be seen as the space of

5GC is the complex Lie group with compact form G
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global sections of a pre-quantum line bundle L.
(Xa ‘]) ~ (MJ7LJ) ~ VJ = HO(MJaLJ)

Hitchin gives conditions of existence of a projectively flat connection for a family of Kéhler
polarisations on M induced by a family of complex structures J on X.

Theorem 0.0.1 (Hitchin [Hit90a], Theorem 1.20) Given a family of Kdhler polari-
sation on M, such that for each polarisation we have

1. The map given by cup-product with the class [w] of L
ulw] : HY(M, Tay) — H'(M, On)

is an isomorphism ( This means that there is no global vector field fixing L, i.e.

HO(M, Dy (L)) = HO(M, Oy)).

2. For each s € H*(M, L) and a tangent vector I to the base of the family there exists a
smoothly varying
A(I,s) e HY(M,D\)(L) 5 L)
such that the symbol —iV (A(1, s)) equals the Kodaira-Spencer class [I] in H* (M, Tyy).

Then this defines a projective connection on the bundle of projective spaces P(H°(M, L))
over the base of the family.

Here DJ(\}[)(L) is the sheaf of first order differential operators on L and V; its symbol map to

Tyr. H! stands for the first hypercohomology group of the two-term complex DE\}[)(L) =L
given by evaluation on s which parameterizes the infinitesimal deformations of the triple
(M, L,s), for s e H(M, L) ( [Wel83], Proposition 1.2).

Moreover, Hitchin showed that (M, w) satisfies the condition of the theorem, where
(M, L) is the space of flat unitary trace-free connections on the trivial rank-r bundle (case
G = SU(r)) over a closed oriented surface X of genus g > 2 (exception r = g = 2), which
is not a manifold but its smooth locus is equipped with a canonical symplectic form and
L =~ LF is the k-th power of the ample generator of the Picard group. By the Narasimhan-
Seshadri Theorem M is the moduli space of semi-stable rank-r vector bundles with trivial
determinant, thus a projective variety. The symplectic form w is a Kahler form and the
inverse of the determinant line bundle provides a pre-quantum line bundle. See [Qui85].
In this case we can describe the map

A(—,s) : H(C, Te) — HY (M, D) (L) 2 ),
as follows: take the short exact sequence of complexes

0 — D) (LF) —= DY (LF) — Sym?(Ty) —=0

0 Lk Lk 0 0

2
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with connecting morphism
81 : HO(M, Sym?(Ty)) — H' (M, D) (£F) = £F). (0.0.1)

Thus the map A(—, s) is given by d; pre-composed with the quadratic part of the Hitchin
system p
p HY(C, Te) — HO(M, Sym*(Ty)).

Hitchin proved that HL]CA(—, s) satisfies the second condition of Theorem 0.0.1, hence the
existence of a projectively flat connection over Vj, the push-forward of £ to the Teichmiiller
space. In [Hit90b] Hitchin generalizes his construction of the connection to the parabolic
case over the projective line.

I-2) A first generalization to parabolic bundles: Scheinost and Schottenloher [SS95]
generalize Hitchin’s construction to any dimension and also deal with the case of parabolic
vector bundles in dimension one. Take X a Kahler manifold, and for Lie group G associate
the space H' (X, G) (non-abelian cohomology). They study the case where G' = SU(r) hence
the space H'(X, G) can be identified with the moduli space M of semi-stable holomorphic
rank-r vector bundles £ on X with total Chern class ¢(F) = 1 and det(E) = Ox. For a
compact Kahler manifold this space is a compact, complex variety with singularities and
not necessary connected and equipped with a natural Kahler form that represents in some
cases the Chern class of natural ample line bundle £ that generalises the determinant line
bundle in dimension one.

Theorem 0.0.2 Let M a smooth connected and simply-connected component of
HY(X,SU(r)). Let (I;,w;)ep be a family of Kihler structures on M, induced by an algebraic
family of Kdhler structures of X, such that

1. wy = wyy is a fized integral form,

2. (It)tep is a holomorphic family of complex structures on M given by holomorphic
map w : M — B.

Let L be a universal bundle over M, such that L|r, is the generalized theta line bundle
over My = (M, 1;) fort € B. Let ¢;(M) = 0 mod[2], and K/l\flz a square root of the
canonical bundle. Then for all integer k > 0:

1. The direct image sheaf Wy 1= w, <L"‘“‘ ® K}Jf) 18 locally free.
2. There exists a natural projectively flat connection on the vector bundle Wy on B.

The twist by K/l\f is what they call a metaplectic correction.

A special case is the case of elliptic surfaces which is related to parabolic vector bundles
over curves. We recall the definition
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Definition 0.0.3 An elliptic surface is a smooth compact complex surface X with a fibra-
tion (proper surjective holomorphic morphism) onto Riemann surface C

f: X—C
such that the generic fibre is an elliptic curve.

Bauer [Bau91] gives a description of the space H'(X, SU(r)) for X an elliptic surface in
term of objects over the Riemann surface C'.

Theorem 0.0.4 Let f: X — C be an elliptic fibration with
b1(X) even, x(Ox) > 0, and kod(X) = 1.
Then there is an isomorphism between

o The moduli space of semi-stable rank-r parabolic bundles of degree 0 on the curve C
with N marked points x1,xo, ..., xn and with certain rational weights.

o A corresponding component of the moduli space of semi-stable rank-r vector bundles
on X with ¢(E) =1 and det(E) = Ox.

Thus by applying Theorem 0.0.2 under the assumption that the canonical bundle admits a
square root, they get a projectively flat connection over the pushforward of the generalized
determinant line bundle with a metaplectic correction ®. Bjerre [Bjel8] (Theorem 10.1)
removed this restriction and proved the existence of the Hitchin connection over the space
WY = @, (E’“) in Theorem 0.0.2 by working on different moduli spaces of parabolic bun-
dles, and using a general construction of the Hitchin connection in geometric quantization,
as done in [And12] and the Hitchin connection in the setting of metaplectic quantization,

as done in [AGL12].

I-3) The use of heat operators by van Geemen and de Jong: Hitchin uses methods
from differential geometry and Kéhler geometry. There exist several works related to
algebro-geometric constructions of the Hitchin connection: Faltings [Fal93], Ran [Ran06],
Sun-Tsai [ST04]. In this manuscript we mainly use the approach given by van Geemen-de
Jong [GdJ98]. One of their main results is an algebraic criterion for the existence of the
Hitchin connection. One of the three conditions of their criterion is the following

HL©pP = —Km/s;

where /g is the Kodaira-Spencer map of a family M — S parameterized by a variety
S an gy, is a map associated to the line bundle L over M and p a symbol map (for the
details see chapter 3). It should be noted that van Geemen-de Jong do not show that the
family of moduli spaces of vector bundles satisfies their criterion, this was done later in
[BBMP23]. They only construct by different methods Hitchin’s connection in rank two,
genus two.

6Note that we don’t know how the generalized determinant bundle introduced in [SS95] and the
parabolic determinant bundle are related
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I-4) The work of Baier-Bolognesi-Martens-Pauly [BBMP23] give an algebro-geometric
construction of the Hitchin connection over the relative moduli space SU¢/s(r) of semi-
stable rank-r vector bundles of trivial determinant over a family of complex projective
curves of genus g > 2 (except the case r = g = 2) parameterized by a variety S using the
so-called trace complexes [BS88], the Bloch-Esnault quasi-isomorphism [BE99], [ST04] to
give a description of the Atiyah class of the determinant line bundle £. The setting is the
following

X =C x5 SUcs(r) — SUcs(r)
Pw Pe
C S

ps

They prove that: For a virtual universal bundle ¢ over C x g SU¢;s(r) one has an isomor-
phism of sheaves

R'pn, (['AOX/SUC/S(T‘) u >]v> = Asurstors (£),

where £ is the ample generator of the relative Picard group Pic (SZ/{C/S (r)/S), Astiesr)/s (L)

its Atiyah algebra and R'p,, ([.Ag( JStes(r) u )] ) the first direct image of the traceless

dual of the Atiyah algebra of the virtual universal bundle ¢/ with respect to the projection
Pn,- As symbol map they take a multiple of the quadratic part of the Hitchin system pf®
which is the classical Hitchin symbol, they prove that it satisfies the van Geemen-de Jong
criterion for £* a positive power of the determinant line bundle L.

1 Hit
Her 0 g (v

where k¢/s and Ksy, 4(r)/s are the Kodaira-Spencer maps of the family of curves and of the
relative moduli space respectively.

o ig/s) = —hRSUcs(r)/S>

I-5) Setting of the problem: Let 7w, : C — S be a smooth family of projective
curves of genus g > 2 parameterized by a projective variety S and let o; : S — C
for i € I = {1,2,...,N} N disjoint sections of 7, i.e. Vi # j and Vs € S, we have:
oi(s) # oj(s). We note D = Zf\il 0;(S) the associated divisor of relative degree N.
A rank-r parabolic type with respect to D is a triple a, := (k, @, n), given by
e A quasi-parabolic type m = ({;,m(7))ir, where {; € N* a sequence of integers
e,

m(i) = (mq(2), ma(i), ..., my, (7)), m;(i) € N* and satisfies the relation Z m;(i) =r.
j=1

e A system of parabolic weights (k, @), where k € N* and @ = (a;(7)) el 8 sequence
Isj<t;

of integers satisfying for each i € T

0<ai(i) <a(i) <. <ag(i)<k.

5
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For a fixed rank-r parabolic type o, = (k,d,m) with respect to the parabolic divisor
D and a relative line bundle § € Pic?(C/S) (i.e. line bundles over C relatively to S), we
denote by
e SMZ% = S./\/l’c)c;g(r, 4, 0) — S,

the relative moduli space of parabolic rank-r vector bundles over (C, D)/S of determinant §

par

and parabolic type a, equipped with the ample line bundle ©,,, € Pic (S./\/lc /S/ S ) called

the parabolic determinant bundle.

AT = € g SMET T SME (0.0.2)
(€, D) S

Question: For any data as above is there for v € N* a projective flat connection on the
vector bundle VP (a, 9, v) = 7, (@;ar) over S associated to a heat operator 7.
Motivation: In the theory of conformal blocks, Tsuchiya-Ueno-Yamada [TUY89] con-
structed for the Lie algebra sl,(C) the vector space Ve (D, X, k), called the space of confor-
mal blocks, where X = {\z}zep is an N-tuple of dominant weights of sl,.(C), k is an integer
and (C, D) denotes a marked curve. This vector spaces can be glued to a vector bundle of
conformal blocks V(D, X, k) over the moduli space M,, y parameterizing N-pointed curves
of genus-g. In [TUY89] they constructed a projective flat connection over the vector bundle
V(D, X, k). Moreover Beauville-Laszlo [BL94] proved that the vector spaces V; in Hitchin’s
constructions are canonically identified with V(D X, k) over a curve with one point and
trivial weight. It is natural to inquire whether the Hitchin connection [Hit90a] and the
Tsuchiya-Ueno-Yamada connection [TUY89] coincide. This question was addressed and
proven by Laszlo [Las98]. Pauly [Pau96] gave a generalization of Beauville-Laszlo’s iden-
tification of the space of non-abelian parabolic theta functions H(SMPZ", ©,,,) with the
conformal blocks V¢ (D, X, k), where the dominant weights X and the integer k£ depend on
the parabolic weights. By Tsuchiya-Ueno-Yamada [TUY89] we know that the vector bun-
dle V(D, X, k) is equipped with a flat projective connection, hence it is natural to ask the
above question, and then to compare the two connections via the projective isomorphism.
This problem has been solved in [BMW21a] and [BMW21b] for semi-simple structure group
G which correspond to trivial determinant parabolic bundles.

I-6) Work of Biswas-Mukhopadhyay-Wentworth: In [BMW21a] the authors give a
proof of the existence of the Hitchin connection for parabolic G-bundles ( we present here

6
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the case G = SL, ") following [BBMP23]. Their strategy uses Galois coverings as following:

Let h be a Galois covering
h:C——=(C,D),

where D = {xq,x9,...,xn} is a subset of the ramification divisor and let I' be the Galois

group of the covering such that C /T' = C. Then we have the following correspondence.
See [MS80], [Bho89] and [BRI3].

Theorem 0.0.5 ([Ses77]) There is an isomorphism between the two moduli spaces

o SMP"(r,d) the moduli space of parabolic rank-r vector bundles over (C, D) of fixed
degree and parabolic type with certain rational weights.

° Sug(r, d) the moduli space of T'-bundles over C of fixed local type.

They use this theorem for trivial determinant vector bundles. Take the forgetful map
Q : SME"(r) = SUL(r) — SUs(r),

which associates to a parabolic bundle over C' the I'-bundle by the Galois covering and
forget the I'-linearisation to get a rank-r vector bundle over C.

Now let h : C —> C be a family of Galois coverings parameterized by a variety S. By
[BBMP23] Proposition 4.7.1 over the space SU g ¢(r) applied to the determinant line bundle

2, we have the equation

U [L] o (p"" 0 Kess) = —Ksues(r)/ss (0.0.3)
where p”% is the Hitchin symbol map over the family of curves (?/S . Their idea is to
use the map @ to transport the equation (0.0.3) to the space SMZ’};(T). They prove in

[BMW21a] Theorem 5.3 the following equality (metaplectic correction) for EAQ = Q*(E)

U[Lg] 0 (ppar S) IiC/S) = TRSMEL(r)/S>

where p,.- is the quadratic part of the parabolic Hitchin system, the parabolic Hitchin
symbol map, and r¢/s (resp. /@SMZ%(T)/S) is the Kodaira-Spencer map of the family of
marked curves (resp. the Kodaira-Spencer map of the family of relative moduli space

which depends on the Galois cover). To conclude they prove that the map 1z, is an

isomorphism, hence define a modified symbol map for the line bundle (EAQ)“ for a positive
integer a by

pgjf,l"(a) = M(_EIQ)Q o (U[ﬁQ] O Ppar © /{C/S) . (OO4)

“Correspond to parabolic bundles with trivial determinant.

7
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In a second paper [BMW21b] they prove that the map U[EQ] is independent of the
parabolic weights in the full flag case, using abelianization and parabolic Higgs bundles.
Hence the modified symbol map (0.0.4) is independent of the parabolic weights (as ppar
and k¢/g are independent on the weights) using the equality EQ = Q*(LA) ~ @ﬁ,{k, given in
[BRI3] (Proposition 4.14), where I is the Galois group of the Galois covering h : ¢ —¢C,
II'| its order and & :=l.c.m {denominators of the rational parabolic weights}. This modified
symbol can be written for any positive integer a € N* as follow

pronr (@) = |T| pga o (VO] © ppar © Fieys)

where © is the pull-back of the determinant line bundle by SMg/¢(r) — SUcs(r) the

forgetful map (forget the parabolic structure) over the family of curves C/S.

We follow the same strategy as in [BBMP23]: first we take as symbol map p,qe, the
quadratic part of the parabolic Hitchin system, and we prove the van Geemen-de Jong
criterion for the parabolic determinant line bundle, which is the equation

He ., © (ppm" © ’%C/S) = _<k + T) Rsmberys-

Our work is independent of the work of [BMW21a]. The objects that we define AY"(FE)
the parabolic Atiyah algebroid and A% "*'(E) the strongly parabolic Atiyah algebroid are
intrinsically attached to the marked curve and the quasi-parabolic type. Our proof is over
SMejg(r, i, 6) the relative moduli space of parabolic rank-r vector bundles with fixed
parabolic type o, and fixed determinant ¢ € Pic?(C/S), where as [BMW?21a] assume that
§ = O¢.

Part II: Main results

We first define two Atiyah-type algebroids and exact sequences that we denote A" (E)
and A% T’St(E) called respectively parabolic and strongly parabolic Atiyah algebroids that
depends only on the marked curve and the quasi-parabolic structure. See section 4.1 for
definitions.

I1I-1) Filtered bundles

Let o, be a fixed rank-r parabolic type. Our strategy is to use the description of parabolic
bundle as filtered bundles via Hecke modification 1.3. See chapter 2 for more details on
filtered bundles.

Definition (Filtered bundles) Let (C, D) be a marked curve and E a vector bundle over
C. A filtered bundle structure on E is given by Fo = (E\)er a left continuous decreasing
R-filtration of locally free rank-r bundles over C' where Ey = E, and such that

1. The length of the filtration is finite over [0, 1].

8
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2. Periodic: For all A € R, we have Ey1 = Ex(—D).

A system of weights A\, of a filtered bundle E, is given by:
1. The jumping real numbers in the real interval [0, 1]; that we suppose rational, and
2. The lengths of the torsion sheaves E/E)\ at the points of the divisor D for X € [0, 1].

Yokogawa-Maruyama [Yok91] constructed for a fixed system of weights A, over a smooth
family of marked curves 7, : (C, D) — S a moduli space M, (r, \,, d) parameterizing semi-
stable rank-r filtered bundles of determinant det(FE,) = ¢ € Pic?(C/S). For a fixed rank-r
parabolic type o, with respect to the divisor D we can associate a filtered system of weights
Ao and get an isomorphism of S-varieties

S ch/lg(ﬁ a*76) - M°<7ﬂ7 )\075)
where we associate to a parabolic bundle &, its Hecke filtration
E(—0y(8)) = HI(E) c HITHE) o - c HAE) « HIE) « HO(E) = €.

where H(€) are Hecke modifications of the vector bundle £ with respect to the (j + 1)-th
element of the flag at the i-th section o; : S — C of the map 7, (see section 2.2.1). We
define for each rational number v € QQ a shift map H.,, as follows

Hy o Mo(r,Ae,8) — Mo(r,Hy(AD), Hy(0))
Ee=(Erer —  E[7]e = (Exiq)rer

where H,(A.) is the shifted system of weights and H,(d) := det(E,).

II-2) A parabolic version of Beilinson-Schechtman-Bloch-Esnault theorem

For & = (€))aer a “virtual universal” filtered bundle over X, := C xg M,(r, \., )
(see Definition 1.2.14). For each A € R we associate the following exact sequence

0 R, (K an,) — Bty (| ARAEND) | ) — Rio, (parEnd”(£3)) — 0
given by taking the first direct image of the dual of the strongly parabolic trace free Atiyah
sequence twisted by the divisor D := D x5 M.(r, A\, ), we denote its extension class by

A(X) and we set J) 1= UA,.

We denote by O(A) the pull-back of the ample generator of the relative group
Pic (SUc(r,6(N))/S) by the classifying rational map

Oy 1 Mo(r, A, 0) —> SUcss(r,0(N))

E, — Ex
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we set d(\) = deg §(A\) and n(\) = ged(r, d(N)).
We prove a parabolic version of [BBMP23] Theorem 4.4.1.

Theorem 4.3.3: For each A € R, we have the following isomorphism of short exact
sequences over My(r, Ao, 0) = S./\/lg‘/lg(r, Uy, 0)

R, (Koo jsaagey ) = B, (| ANy prar (1) (D)| ) —= B, (parBnd’(£)))

| : lz

v
Osppar€ Asmrerss (O(A)) 1 Tspper s

This isomorphism is equivalent to the equality of extension classes

r

a2 = O] € HY (8, Rime, (Vass))

I1I-3) Description of the parabolic Kodaira-Spencer map

Let &, be a virtual universal bundle over C x g SMEJo(r, o, ) (see diagram (0.0.2)), take
the first direct image of its traceless parabolic Atiyah exact sequence with respect to the
map T : S./\/lg%(r,oz,é) — S.

0,par
)—— TSMZ%/S — Rl'/rn* <AX£‘”/SM§7; (5)) —_— Rlﬂ'n* (7T;'L (TC/S (—D))) — 0,

We denote by ®P*" the first connecting morphism of the long exact sequence in cohomology
with respect to m.,. We prove in Proposition 4.5.4 that the map ®"*" commutes with the
Kodaira-Spencer maps of the two families

@Par o RC/S = KgMPOT,

C/S/S’

where rk¢/g and kg MBS Are the Kodaira-Spencer of the family of marked curves and the

family of relative moduli space respectively. We call the map ®P*" the parabolic Kodaira-
Spencer map.

This factorization follows from the deformation theory of the triple (C, D, E,) given
by a smooth marked projective curve of genus g > 2, D a reduced divisor of degree N
equipped with a quasi-parabolic rank-r vector bundle E, of fixed quasi-parabolic type m.
Then we prove that the infinitesimal deformations of (C, D, (E, F}(F)) are parameterized
by H' (C, A% (E)). This result is proven independently in [BDHP22] using Galois covers.
Our proof follows [Mar09].

10
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Parabolic Hitchin symbol map: We take for the Hitchin symbol p,, the quadratic
part of the parabolic Hitchin system. We prove that the trace of parabolic endomorphism is
invariant under Hecke modification.i.e., for all i € I and j € {1,2, ..., {;}, then tr(H(f)) =
tr(f) for all parabolic endomorphisms f of a parabolic vector bundle E,. Hence pp,, is
invariant under Hecke modifications. Now let ¢ be the first connecting morphism of the
long exact sequence for 7, of the sequence

0,par,s v
0 —— Osaper, — R'T,, <[AXI;M/§M2(7; (&) (D)] ) — Tspmparys —= 0,

where D := 715, (D) = D x5 SMEi(r, ax, ).
We prove a parabolic version of Proposition 4.7.1 [BBMP23]. Then

Proposition 4.5.5:  The following diagram commute

_ppar

Rz, (Te/s(—D)) R'me, (TSM?/ZQ/S)

e, Sym” <T3M57;/5>
ie: DM 4 00 Py = 0.
As a corollary we get the following theorem.

Theorem 4.5.7: For allie I and j € {1,2,...,4;}, we have the equations

r r

v [®J<Z)] O Ppar = _n—(z) (I)pary and ()] [@] O Ppar = —
J

Here, ©;(7) is the pull-back of the ample generator of the relative Picard group
Pic (SUcys(r,d;(i))/S) under the classifying map

¢j,i . SMZC)(;E.(T, O./*,(S) E— SUC/S(T, 53(2))
2 — ()
and where ’Hf (€) is the Hecke modification of the vector bundle &, with respect to the
(7 + 1)-th element of the flag at the i-th section o; : S — C of the map 7, © is the
pull-back of of the ample generator of the relative Picard group Pic (SZ/{C /s(r,0)/ S) under

the forgetful map and n;(7) := ged(r, deg 6;(i)) and n := ged(r, degd).

11
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I1-4) Some line bundles over the space SMgjg(r, ax,d)

In order to obtain the van Geemen-de Jong equation for the line bundle ©,,, we need to
study the relation between ©,,. and the line bundles ©,(), this is done in the following
propositions.

Proposition 4.6.3 (Parabolic determinant bundle and Hecke modifications)
Let &, be a family of parabolic rank-r vector bundles with determinant § € Pic(C/S) of

parabolic type o, over a smooth family of curves wgy : C — S parameterized by a S-variety
T. Then

i=1 j=1

N 4-1 '
)‘Par(g*y = O ® <® @ @](Z)qj(l)> ,
where, for allie I and j € {1,2,....0; — 1}

o O is the pull-back of the ample generator of Pic(SUc)s(r,0)/S) by the classifying map
o1 and n = ged(r, d).

o O(i) is the pull-back of the ample generator of Pic (SUcs(r,d;(i))/S) by the classi-
fying maps ¢f; and n;(i) = ged(r, d;(i)).

o pj(i) = aj1(i) —a;(i) and q;(i) = n;(i)p; ().

ea=n (k— %Eiilpj(i)>.

i=1 j=1

For a virtual universal parabolic bundle over C x g S/\/lg%(r, a4, 0) and by the previous

proposition, the parabolic theta line bundle over SMZC/Lg(r, iy, 0), satisfies the equation

N ¢;—1
nlk=3 3 p'(%’)) N N
@;ar s < i=1j=1 ! ® @j(i)”j(l)Pj(l)_

With the same methods we give a description of the relative canonical line bundle.

]Ic’roposition 4.6.5: The relative canonical bundle of the space S/\/lg%(r, a, 0) 18 given as
ollows

—n <2+deg(D)—§ ei) N £i—1
o ,

i=1 ® ® ® @j(i)*nj(i)'

ar =
KSMg/S/S
i=1 j=1

Using these decompositions and the van Geemen-de Jong equation over the space
SUc)s(r, *) of fixed determinant « € Pic(C/S), we prove that the van Geemen-de Jong cri-
terion is fulfilled for the parabolic determinant line bundle over the space SMg7(r, av, 9).

12
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Theorem 4.7.1: Let v € N*. The v-th power of the parabolic determinant line bundle

Oy, satisfies the van Geemen-de Jong equation, i.e.,

Hey,, © Ppar = —(Wk + 1) Ppar.

We define the flag part of the parabolic determinant line bundle ©,,,, as follow
CRE=EHOEC) S
such that

and take the cup-product map
U [f(oz*)] C ey Sym2T3MPar/S — Rlﬂ'e*TSMpar/s.

Then as a corollary of the previous theorems we get that the cup- product with the flag
part is zero. Hence the parabolic system of weights @ does not contribute.

II-5) Main theorems:

Theorem 4.7.5: Let v be a positive integer. We consider a smooth family 7ty : (C, D) — S
of complex projective marked curves of genus g = 2, D a reduced divisor of relative degree
N and o, = (k,d,m) a fized rank-r parabolic type with respect to the divisor D without

trivial parabolic points. We denote by 7. : SMZ%(T, Qy,0) —> S the relative moduli space

of parabolic rank-r vector bundles over (C, D)/S with determinant § € Pic*(C/S), equipped
with the parabolic determinant bundle ©,,.. Then there exists a unique projective flat
connection on the vector bundle 7., (©5,,) of non-abelian parabolic theta functions, induced
by a heat operator with symbol

; 1
Hit -
ppar (V) . (V]{Z + 7’) (ppar © K:C/S) .

For D = ¥ and a, = k € N* the trivial parabolic type, we have the identification of the

par

moduli space S./\/lc/s(r, ., 0) with SUe/s(r, 0) the moduli space of semi-stable rank-r vec-

r/n

tor bundles with determinant &, hence Opar = LF for n := ged(r, deg(d)) and ppa, = p
We obtain the following special case for non-parabolic vector bundles.

Hit

Theorem 4.7.6: Let k be a positive integer. Suppose a smooth family p, : C — S
of complex projective curves of genus g = 2 (and g = 3 if r = 2 and deg(d) even), set
n := ged(r, deg(0)). Let L be the ample generator of the Picard group of SUc/s(r,0). Then
there exists a unique projective flat connection on the vector bundle p., (L) of non-abelian
theta functions, induced by a heat operator with symbol

p(k‘) . n ) (pHZt @) HC/S) .

“r(k+n)
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In fact for k € N*, we have Oy = L*, hence p(k) = PIE(L).

Note that for 6 = O¢ we recover the classical case proved in [Hit90a].

Document structure

Chapter 1: We recall the definition of parabolic vector bundles, some of their proprieties
such as semi-stability conditions and Mehta-Seshadri theorem of the existence of a relative
moduli space of semi-stable parabolic vector bundles of fixed parabolic type over a family
of smooth projective complex curves. In the second part we study the stability criterion
under the forgetful maps, the description of the determinant line bundle and the definition
of the parabolic determinant line bundle.

Chapter 2: We present the Yokogawa-Maruyama and Simpson point of view of filtered
vector bundles and the identification of their moduli space with the space of parabolic vec-
tor bundles. We give some of their properties and we give a study of the group of parabolic
transformations and their action on the parabolic weights.

Chapter 3: In this chapter we present the main theorems that we need in our work: the
van Geemen-de Jong criterion of existence of Hitchin connection and the flatness criterion.
We recall the definitions of Atiyah classes, sheaves of differential operators on vector bun-
dles and associated morphisms and the definition of heat operators.

Chapter 4: We present an algebro-geometric construction of Hitchin’s connection in the
sheaf of parabolic non-abelian theta functions. We give a decomposition of the parabolic
determinant line bundle. We prove a factorisation theorem of the Kodaira-Spencer map
of the relative moduli space of parabolic bundles. Using these decompositions, we prove
that the parabolic determinant line bundle satisfies van Geemen-de Jong equation over
the moduli space of parabolic vector bundles, where we take as symbol map the quadratic
part of the parabolic Hitchin system. Hence we construct the existence of a flat projective
connection on the sheaf of parabolic non-abelian theta functions. We prove that this
connection is flat.
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Chapter 1

Parabolic vector bundles and their
moduli spaces

1.1 Parabolic bundles

Let C' be a smooth projective complex curve of genus g > 2 and D={z1,xs, ..., xy} a finite
set of points x; € C. The set D will also be called a parabolic divisor.
We set I = {1,2,..., N}, where N = deg(D).

Parabolic type of a vector bundle
A parabolic type for a rank-r vector bundle over C' with respect to the parabolic divisor

D is the following numerical data a, = (k, @, m) consisting of :

e A quasi-parabolic type m = (¢;, m());er, where
1. ¢; € N* called the length at the point x; € D.
2. a sequence of integers, called the flag type at x; € D
m(i) = (my(2), ma(7), ..., my, (7).
with m;(i) e N*.
3. we have for every i € I the relation ZZ m;(i) = r.

7j=1

e A system of parabolic weights (k, @), where k € N* and @ = (a;(i)) wr a sequence
1<5<¢;

of integers satisfying for each i € T
0<ai(i) <ag(i) <. <ag(i)<k.

15



1.1. PARABOLIC BUNDLES

We say that x; € D is a trivial point if ¢; = 1, which implies that m4(i) = r and m(i) = (r).
We say that a, is full flag parabolic type if ¢; = r for all i € I, thus m;(i) = 1 Vi, j.

The notion of parabolic vector bundle was introduced by Seshadri in [Ses77].

Definition 1.1.1 (Parabolic vector bundles) Let E be a rank-r vector bundle over C.
A quasi-parabolic structure of quasi-parabolic type m = (I;, m(i))c; on E with respect to
the parabolic divisor D is given by a filtration of length ¢; on the fibre E,, for each i€ I,
by linear subspaces

FXE): By, =FNE)>F(E)>- > F'(E)> F"(E) = {0}

2 3

such that for j € {1,2...,¢;} we have
dime (F/(E)/FI(E)) = m, (i)

We denote a quasi-parabolic bundle by (E, F;(E)).

A parabolic structure on E with respect to the parabolic divisor D is the data (E, Ff(E), av)
where o, = (k,d,m) a fixed parabolic type and (E, F}) is a quasi-parabolic structure over
E of type m with respect to the parabolic divisor D. We denote a parabolic vector bundle
by E. and o is called its parabolic type.

For all i e I and j € {1,2,...,¢;}, we define the following quotients

Grl(E) == F/(E)/F]"(E),

(2

of dimension m;(7) and ‘ A
QUE) := By, [T (E).

We denote their dimensions by
' J
ri(i) = dime QI(E) = > my(i).
q=1

Note that 7, (i) = r.

Definition 1.1.2 (parabolic degree, slope and Euler characteristic)
Let E, be a parabolic vector bundle over C. We define
1. The parabolic degree

N ¢

pardeg(E) = deg(E) + %Z Z m;(i)a; (7).

i=1j=1
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CHAPTER 1. PARABOLIC VECTOR BUNDLES AND THEIR MODULI SPACES

2. The parabolic slope
_ pardeg(F)

Hpar(E) = rank(E)

3. The parabolic FEuler characteristic

X (B) = X(B) + 7 303 m (0)ay 1)
= deg(FE) + rank(EF)(1 — g) + %Z Z m;(i)a;(i)

= pardeg(E) + rank(E)(1 — g).
Definition 1.1.3 (parabolic quotient and subbundles) Let E, be a parabolic bundle
over C of parabolic type . with respect to the divisor D.
1. A parabolic subbundle is the following data:

(a) a parabolic vector bundle Fy of parabolic type B, with respect to the parabolic
divisor D such that F is a vector subbundle of E.

(b) foralliel and qge{1,2,....1;(F)}, let j is the greatest integer such that
F{(F) = F/(B),
then we have

by (i) = a;(i).

2. A parabolic quotient bundle of E, is the following data: a parabolic bundle Fy of
parabolic type By with a surjective morphism f : E — F such that:

(a) for allie I and g€ {1,2,....,l[;(F)} there is an element j € {1,2,...,[;(E)} such
that ‘
foi(F(E)) = F/(F).

(b) if 7 is the greatest integer such that the equality holds, we have
by(i) = a;(i).

Remark 1.1.4 Let E' be a subbundle of a parabolic bundle E,. Then E' is equipped with a
canonical parabolic structure as follows: the filtration Fj*(E') consists of the distinct terms
of the filtration F}(E) E,. and the parabolic weights are taken as

d,(i) = mazfa,(i) | F/(E) n E,, = F/(E))

We denote the induced parabolic structure by E, and the associated parabolic weights by

al,. We define the same canonical parabolic structure for quotient bundles.

When we consider subbundles (resp. quotient bundles) of a parabolic bundle E, they
will be equipped with the canonical parabolic structures.

17



1.2. MODULI SPACES OF PARABOLIC BUNDLES

Definition 1.1.5 (parabolic and strongly parabolic endomorphisms)
Let E, be a parabolic bundle over C and let f € End(E) then

1. f is a parabolic endomorphism if for all i€ I and j € {1,2,...,4;} we have
fe (F/(E)) = F{ (E).
We denote the sheaf of parabolic endomorphism by parEnd(E).
2. f is a strongly parabolic endomorphism if for allie I and j € {1,2,...,¢;} we have
fo (F(E)) < FTN(E).
We denote the sheaf of parabolic endomorphism by SparEnd(E).

The sheaves introduced above are locally free and by definition we have the following sheaf
inclusions
SparEnd(E) — parEnd(E) — End(E). (1.1.1)

Remark 1.1.6 The definitions of parabolic and strongly-parabolic endomorphisms depend
only on the quasi-parabolic structure and not on the the system of parabolic weights.

Proposition 1.1.7 ([Yok91]) Let E, be a parabolic vector bundle over C with respect to
the parabolic divisor D. Then we have a canonical isomorphism of locally free sheaves

parEnd(F)" = SparEnd(F) ® Oc(D).
This isomorphism is given by the non-degenerate trace paring

Tr : parEnd(F)® SparEnd(E) — O¢(—D)
PR Y — Tr(poy).

And by dualizing (1.1.1) we get
End(FE)Y =~ End(F) < SparEnd(F)(D) < parEnd(FE)(D).

1.2 Moduli spaces of parabolic bundles

To construct the moduli space of parabolic vector bundles over a curve C', we need a notion
of semi-stability and stability which will depend on the parabolic type a,. In this section
we recall the definition of stability and the theorem of existence of a coarse moduli space
parameterizing parabolic bundles. The main reference is [Ses82].

Definition 1.2.1 (stability) A parabolic bundle E, over a curve C is said to be parabolic
stable (resp. parabolic semi-stable) with respect to the parabolic type o if for all proper
vector subbundles F' equipped with the canonical parabolic structure we have

tpar (Fi) < ppar (Ex)  (resp. <).
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CHAPTER 1. PARABOLIC VECTOR BUNDLES AND THEIR MODULI SPACES

We will from now on abbreviate parabolic (semi-)stable by (semi-)stable when considering
parabolic vector bundles.

Remark 1.2.2 Let E, be a rank-r parabolic bundle with respect to a parabolic divisor D.

1. Suppose there is ig € I such that x;, € D is a trivial point. Then there a natural
parabolic structure on E denoted E, with respect to the parabolic divisor D\{z;,} of
type o, (we forget the weight on x;,). We have the following relation

pardeg(FE.) = pardeg(FE,) — r#,

hence .
ax (i)
k

Mpa"r(E;) = pr(E*) -

and we have the following equivalence

E. stable (resp. semi — stable) <= F, stable (resp. semi — stable).

2. Let L be a line bundle over C', thus E® L can be equipped with a canonical parabolic
structure induced by the parabolic structure of E,, we denoted this structure by
(E® L) which is also of parabolic type o, and we have the equivalence

(E® L), stable (resp. semi stable) <= FE, stable (resp. semi stable).

Proposition 1.2.3 (Jordan-Hélder filtration) Let E, be a semi stable parabolic bundle
over C'. There exists a filtration of E by subbundles called the Jordan-Holder filtration

0O=E,1cE,c..cEcE cE=FE (1.2.1)

such that for all 1 < i < p, the vector bundle E;/E; 1 equipped with the canonical parabolic
structure is stable and

:upar((Ei/Ei-&-l)*) = Npar(E*)'
We define the parabolic graded bundle

Gr(Ey) == @1 (Ei/Eit1),
equipped with the canonical parabolic structure.

It can be shown that the isomorphism class of Gr(F,) does not depend on the filtration
(1.2.1).

Definition 1.2.4 (S-equivalence) We say that two semi-stable parabolic rank-r vector
bundles E, and E! over the curve C' of parabolic type a, with respect to the parabolic
divisor D are S-equivalent (and we denoted E, ~g E. ) if their associated graded Gr(E,)
and Gr(FE.) are isomorphic as parabolic vector bundles. Moreover if E, is stable then
Gr(E,) = E,.
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Mehta and Seshadri constructed the moduli space of semi-stable parabolic vector bun-
dles over a smooth projective complex curve C.

Theorem 1.2.5 (Mehta-Seshadri [MS80]) For a fized parabolic type a, there is a
coarse moduli space MP" := MPZ"(r, a, d) which is a projective irreducible normal va-
riety, parameterizing semi-stable parabolic rank-r vector bundles and of degree-d modulo
S-equivalence over the curve C. Moreover, the subspace MP*" < MP?" of stable parabolic
bundles is an open subset included in the smooth locus.

Assuming g > 2 (see remark 4.7.7 for the cases of genus=0,1), the dimension of the
moduli space M7 = MZ" (1, ., d) is

L& 4
dime ME(r, ay,d) = r*(g— 1) + 1 + 52 (7"2 - Z mj(z')2> :
i—1 j=1

For a line bundle § € Pic?(C') we define the subspace
SMP"(r,0) = {Ey € MU (r,au,d) / det(E) = §}

parameterizing rank-r S-equivalence classes of vector bundles over C' of determinant 0,
which is also projective irreducible normal variety of dimension

N 0
dime SMYT(r,6) = (r* —1)(g — 1) Z ( Z mj(i)2> :

Remark 1.2.6

1. The dimension does not depend on the system of weights.

¢
2. Foriel ={1,2,..,N} the integer ; (7“2 -] mj(i)Q), is the dimension of a flag
j=

.

variety of type m(i).

1.2.1 Families of parabolic vector bundles

Let T be a Noetherian scheme over C and C' a smooth projective complex curve equipped
with a parabolic divisor D. We also fix a parabolic type a, with respect to the parabolic
divisor D and let § € Pic*(C).

Definition 1.2.7 A family of parabolic rank-r vector bundles of fized degree d (resp. fixed
determinant §) over C' parameterized by T is a locally free sheaf & over C' x T together
with the following data: for each i € I, we give a filtration of the locally free sheaf
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by locally free subsheaves

Euy = FHE) D FAE) o - D F(E) o it (&) = {0},

(2

such that ' .
rank (F} (€)/F/ " (€)) = my(i),

and for all closed points t € T the rank-r vector bundle & = E|cxqy s of degree d (resp.
determinant §) and equipped with the induced parabolic structure is a semi-stable parabolic
bundle of type a, with respect to the parabolic divisor D.

Two families of parabolic bundles &, and &, of parabolic type a, parameterized by T
are equivalent if there is an invertible sheaf L over T such that

Ee = E,@p5(L),
where py : C' x T — T the second projection map.

We get a functor

MPYT = MP(r oy, d) : C — schemes —> Set
T — MP(T),

which associate to a Noetherian C-scheme T the set of equivalent families of parabolic
rank-r vector bundles over C' parameterized by 7 of parabolic type a, with respect to the
parabolic divisor D and of fixed degree d.

For a line bundle § € Pic*(C') we define a sub-functor

SMPY(r ., 0) < MPY(r, cuy, d),

which associate to a noetherian C-scheme 7 the set of equivalent families of parabolic rank-
r vector bundles over C' parameterized by 7T of parabolic type a, and fixed determinant 9,
i.e. for any Noetherian C-scheme T we have

SMPY(r g, 0)(T) := {E € MP (1, vy, d)(T) / det(&) = pi(0;) Vte T},

where p; : C' x T — (' is the first projection map.

Theorem 1.2.8 [MSS80] The functors

MP(r g, d) and SMPY (1, a, §),

are representable respectively by the varieties M (r, a, d) and SME" (r, oy, 0) given in
the Theorem 1.2.5.

21
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By representable we mean that there is a functorial morphism
W MPY(T) — Mor(T, MPY(r, a, d)),
which is universal in the following sense :

1. for each algebraic variety A and a functorial morphism
¢ : M (T) — Mor (T, N),
there is a unique morphism
foMP(ray,d) — N,

making the following commute

MP (T e Mor(T, MP" (r, ay, d))

xtf

Mor(T,N)

The pair (MP* (1, a, d), 1) is uniquely determined by this condition.

2. We note by S(r, ay, d) the set of isomorphism classes of semi-stable parabolic rank-r
vector bundles of degree d and parabolic type a,. Then ¢ induces a map of sets

W S(r, o, d) = MPY (Spec(C)) — MPY(r; oy, d).

The second point means that the map surjects and fibers are S-equivalence classes of
semi-stable parabolic bundles. Same for the functor SMP (1, ay, J).

1.2.2 Relative moduli spaces

In this subsection we will recall the existence of a relative version of the moduli spaces
of semi-stable parabolic vector bundles over a family of smooth projective complex curves
equipped with a family of parabolic divisors.

Let 7, : C — S be a smooth family of projective curves of genus g > 2, parameterized
by an algebraic variety S over C and let

o;: S C, iel={1,2,..,N},

be N-sections of m,, such that

Vi # jel and Vs € S, we have: 0;(s) # 0(s).
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We denote by

D = Z ai(9),
i€l
the associated divisor (as the relative dimension of the map m, is one), which will be

seen as a family of parabolic degree N divisors parameterized by the variety S and let
§ € Pic!(C/S) (See [FGI*05] for definition of relative Picard groups).

Let m : T — S be a S-variety. A relative family of parabolic rank-r vector bundles
and fixed degree d (resp. determinant 0) over C/S of parabolic type «, parameterized by
T/S is a locally free sheaf £ over C xg T together with the following data:

e For each i € I, we give a filtration of the vector bundle &,, := &|s,(s5)xs7 Over
0i(S) xsT =T by subbundles as follow

£, = FME) = F2(€) = - > F(€) > FIH(€) = {0},
0<a1(id) <ax(i) <...<ayp(i) <k,
such that for each j € {1,2,...,¢;} we have
vank (F7 (€)/Fi*1(€)) = my (i),
Thus we get a parabolic structure over &£, denoted by &,.

e For each t € T we set C; := m, ! (7.(t)). Then the vector bundle &,|, is a semi-stable
parabolic bundle of parabolic type a, of degree d (resp. determinant §; := dl¢, €
Pic?(C,)) with respect to the parabolic divisor

Dy =) oi(m(t)).

1€l
We define the same notion of equivalence of relative families as before. We get a functor

P MEY(r o, d) 2 S — schemes — Set

c/s = Meys
T — MP(T),

which associates to a Noetherian S-scheme T the set of equivalent families of parabolic
rank-r vector bundles over C/S parameterized by the scheme 7 /S of parabolic type a, and
fixed degree d.

As before we define a sub-functor

SM?;; (T7 Qs 5) - M?}g (T7 Ay, d)a

parameterizing parabolic rank-r vector bundles over C/S of type «, with respect to the
parabolic divisor D and of fixed determinant & € Pic?(C/S).
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Maruyama and Yokogawa constructed a relative version of the moduli space of semi-
stable parabolic vector bundles over a smooth family of projective curves in [ Yok93],[MY92]
and [Yok95].

Theorem 1.2.9 The functors MZ(;;(T, ay,d) and SMZ%(T, a4, 0), are representable by

proper S-schemes that we denote respectively by

b = M (r, v, d) and SMET, = SME(r, . 6).

Their closed points parameterize relative S-equivalence classes of rank-r semi-stable parabolic
vector bundles of fixved type o, and degree d respectively fix determinant § over the family
of curves my : C —> S. As a S-schemes they are equipped with a surjective proper maps

par

T C/S(r, g, d) — S,
e :SMeg(r, s, §) — S.

And for each s € S we get
7, H(s) = M (1, o, d) and w7 (s) = MEY (r, a, d),

the moduli space of semi-stable rank-r parabolic bundles of parabolic type o, and degree-d
(resp. determinant 0,) over the curve Cs = m,'(s) with respect to the parabolic divisor

Dy = > 0i(s).

iel
We also define the following fiber products over S of the relative moduli spaces with the
family of curves

X = € s SME(r00.8) e S 00,9
C x5 Mgis(r, o, d) i Meis(r, as, d)
C S

Ts

Definition 1.2.10 (Universal family) A universal parabolic vector bundle (or a parabolic
Poincaré bundle) overC XSMZC/Lg(r, ay, d) is a family E, of parabolic vector bundles of rank-r
and degree d of parabolic type o, over the family of curves C/S parameterized by the moduli
space Mgig(r, s, d), such that

VI[E.] € ./\/lg(/lg(r, g, d),
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we have

8*|CE* ~Ss E*7

over the curve
Cp, =, (me ([EL])) .
Same definition over the variety SMgg(r, s, 0), for a line bundle 6 € Pic?(C/S).

Remark 1.2.11 1. The universal parabolic bundle may not exist.
2. When it exists, the universal parabolic bundle is unique up to equivalence of families.

3. In fact, existence of universal family is equivalent to the isomorphism of functors

5, s d)(=) = Hom (= ME5(r, ) ).

In this case we say that the moduli space is a fine moduli space.

Proposition 1.2.12 ([BY99], Proposition. 3.2) The moduli space of parabolic-stable
bundles is fine if and only if we have: ged{d,m;(i)|ie I,1 < j <{;} =1.

As universal bundles do not exists in general, we define a weaker notion.

Proposition 1.2.13 ([NS75], Proposition. 2.4) We fiz a parabolic type c,. Then there
is a non-singular S-variety SM’ equipped with a family of parabolic stable rank-r vector
bundles &, of parabolic type o, with determinant , such that the map

Yo SM — SMEE(r, s, 0)

t — [5* |t (t)]

15 €tale and surjective.

Definition 1.2.14 (Virtual universal bundle) The family given in the above proposi-

tion is what we call a virtual universal parabolic bundle of parabolic type a., over the variety
S g‘;g(r, Qx, 0).

Remark 1.2.15 As SMZC/LZ,(T, a4, 0) is a good quotient of a Hilbert quotient scheme, de-
noted Z°°, then there is a universal bundle &, on C xg Z°°. &, may not descend to
C x5 SMgj, but objects such End’(€),parEnd®(€) and A°(E) etc. , descend. Recall
that a sheaf F on C x g Z°% descends to C X g SMZ% if the action of scalar automorphisms
of F relative to Z%° is trivial. Hence without confusion we will be assuming existence of
universal bundle &, over C x g SMP that we call a virtual universal bundle.
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1.3. HECKE MODIFICATIONS

1.3 Hecke modifications

Let £, — C be a rank-r parabolic vector bundle of parabolic type a, with respect to
the parabolic divisor D of determinant § € Pic?(C) . We associate the following exact
sequences ‘ ‘

0— HI(E) > E— Q(E) —0

where for all i € I and j € {1,2,3,..., ¢}
QI(E) := E,,/F/ " (E)

the quotient sheaf supported on x; of length
J
ri(i) = Y mg (i)
q=1

The subsheaves H? (E) are locally free of rank-r and their determinant is given by
55() = 6@ Oc (—1,(i)zs).
We denote their degree by
d;(i) := deg 0;(i) = d —r;(2),
and we set for all i € I and j € {1,2,...,{;} the integers
n;(i) = ged(r,d;(i)). and n = ged(r,d).

Definition 1.3.1 (Hecke modifications) We call the vector bundle HI(E) the Hecke
modification of the parabolic bundle E., with respect to the subspace FgH(E) c E,, for all
iel and je{1,2,3,....0;}. We set H)(E) = E.

Proposition 1.3.2 (Hecke filtrations) Let E, be a parabolic rank-r vector bundle with
respect to the parabolic divisor D. Then for each i € I the Hecke modifications over x; € D,
satisfy the following inclusions for all j € {1,2,...,4;}

E(—a;) = Hi(E) c Hy " (E) © - -- < H}(E) € Hj(E) < H}(E) = E.
Proof. We take the Hecke modifications over a point x; € D fori € I and let j € {1,2,...,¢;},

the j-th Hecke exact sequence

0 — H(B)— B —=QI(E) —0

Y

where the last arrow is given by the composition

€vz,

E E,,— QI(E) = E,,/F/*\(E).
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The inclusions ' .
FTYE) = FI(E)

give surjective maps

QI(E) QUE).
Then we get
0—=HITH(E)S E Q" (E)—=0
]
0 ——=HI(E) E —Q!(E) —0

As the right diagram commutes and the map p o ¢ = 0, we get that the image of the map
q is in the subsheaf H!(FE). So as a conclusion, we get a filtration by rank-r locally free
subsheaves

B(~a;) = HA(E) « MO N (E) @ - « HA(E) < HL(E) « HY(E) = E.

Remark 1.3.3 By the last proposition a rank-r parabolic structure with respect to a parabolic
divisor D is equivalent to the following data: (E, HE(FE), as) such that

e F a rank-r vector bundle over C.
e a, = (k,d,m) is a parabolic type with respect to the divisor D.
o [Forallie I, we give a filtration by rank-r locally free subsheaves
E(—x;) = Hi'(E) c Hy"Y(E) ¢ - - - < H}(E)  Hj(E) € H)(E) = E,

such that the torsion sheaves

H](E)/H](E)
are supported at x; € D and of length

length (H](E)/H]TH(E)) = m;(9).

1.4 Line bundles over the moduli spaces SlU¢/s(r,0)

In this section we recall the description of the Picard group of the relative moduli space
of semi-stable vector bundles of fixed rank and determinant and also its ample generator
and its canonical line bundle. See [FGIT05] for relative Picard groups.
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Let 75 : C — S be a smooth family of projective complex curves of genus g > 2. We
suppose that the parabolic divisor is of degree one given by one section ¢ of the family
7 and that the parabolic type is trivial (see Remark 1.4.2 below for a definition). Note
that the trivial parabolic structure is just the structure of a vector bundles and in this
case parabolic semi-stability (resp. stability) coincide with semi-stability (resp. stability)
of vector bundles. Thus the relative moduli space Mg75(r, 0, d) in Theorem 1.2.5 of rank
r and degree d parabolic bundles coincides with the coarse relative moduli space of semi-
stable rank-r and degree-d vector bundles that we denote by

Z/{c/s(r, d) = Mg%(r, 0*, d),

which is of dimension
dime Ue/s(r, d) = r*(g—1) + 1.

If we fix a line bundle § € Pic(C/S), we define a subvariety of Ue/s(r, d) which is a coarse
moduli space parameterizing semi-stable rank-r vector bundles with determinant ¢, given
as follow

SUcys(r,0) = {E e Ueys(r,d) / det(&E;) = o5, Vse S}
SUc)s(r,d) is an irreducible normal variety over S.
Proposition 1.4.1 We have the following

1. The subspace Ug/s(r, d) of stable vector bundles is a smooth open subset.

2. If r and d are coprime i.e. n=1, we have Ue/s(r,d) = Ug 5(r,d), thus Uess(r,d)is a
smooth variety over S.

3. In the case of genus-2 curves, rank-2 and even degree vector bundles, the moduli space
Uess(2,0) is smooth and isomorphic to a PE-bundle over the variety S.

4. Except the previous case, we have that the smooth locus of the moduli space Ue;s(r, d)
coincides with the stable locus L[CS/S(T, d).

The determinant map induces a morphism over S

det : Ues(r,d) —> Pic*(C/S)
E —  det(E).

For a line bundle § € Pic?(C/S), we get
SUC/S(T’, 5) = det_l(é).

which is of dimension

dime SUes(r,0) = (r* = 1)(g — 1).
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We also define the following fiber products X and X’ over S of the relative moduli
spaces with the family of curves

X =C X g SUC/S<T', 5) bn SUC/S(T7 5)
X' ~C X g Z/{c/s(r, d) b Z/{c/s(T’, d)
Pw Pe
C Ps=Ts S

Remark 1.4.2

e By trivial parabolic type over a parabolic divisor D we mean that each point in D is
trivial (see definition 1.1) and that the system of weights is trivial in the following
sense

a1(i) =0 forallie I and k = 1.

We denote a trivial parabolic type by 0O,.

o Tuaking a parabolic divisor of degree one with a trivial parabolic type is just to use
the constructions in the subsection 1.2.2 otherwise modulo the deformation of the
parabolic divisor it is equivalent to an empty parabolic divisor thus no parabolic struc-
ture.

1.4.1 Generalized theta divisor

Let r = 2 and d € Z. We note n = ged(r,d). Let F' be a vector bundle over the curve C
such that for all vector bundles E over C' of rank r and relative degree d (with respect to
the map ), we have

X(E®F) =0,

which is equivalent by Riemann-Roch to

deg(F® F) + rank(E® F)(1 —g) =0,
rank(F) d + r deg(F) + r rank(F)(1 — g) = 0,
rank(F) (d +r(1 —g)) +r deg(F) =0,
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Hence we get the relation

rank(F)(d+r(1 —g))

Y

deg(F) = —

r

deg() = KB

As we want F' with the smallest rank with this propriety, it is sufficient to take
rank(F) =7 and deg(F) = —x(B)

n

By [Hir88] we can find such a vector bundle F' for which there is a vector bundle E
over C such that
H' (EQF)=H'(EQF)=0.
In this condition for § € Pic?(C)) we set
7o = {E € SUc(r,0) | H(E®F) # 0},

we denote its closure by Op;.

Drezet and Narasimhan give the description of the ample generator of the Picard group
Pic(SU(r,6)) and they describe the canonical bundle to the moduli space SU¢(r, d) for
a line bundle § over the curve C'.

Theorem 1.4.3 ([DN89], Theorems B and F) We have the following proprieties

1. ©p;s is a relative hypersurface, which is called the theta divisor.
2. The line bundle L := O(Opy) is independent of F.
3. Pic(SUc(r,0)) is isomorphic to Z and it is generated by L.
4. The dualizing sheaf of SUc(r,0) is
Ksuers) = O(—2n0p;) = L7,
where n = ged(r, d).

1.4.2 Determinant line bundle

Let &€ be a family of semi-stable rank-r vector bundles over C x g7 with fixed determinant
§ € Pic?(C/S) parameterized by a S-variety 7. We get a cartesian diagram

CxgT —22 T
Pw

Pe

C——= 5%
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Definition 1.4.4 (Determinant line bundle[KD76]) Let £ — C xgT be a family of
vector bundles as above. We define

detR*p,,, (£) := (det py, (5))71 ® det Rlpn* &),

which is an element of Pic(T/S) as T is a S-variety and we call it the determinant line
bundle associated to £ with respect to the map p, : C xgT — T.

We have the following lemmas that summarise some proprieties of the determinant line
bundle (see [KD76], see also [Pau98]).

Lemma 1.4.5

e For any short exact sequence of vector bundles over C xg T
0—& —E—E —N0,
we have the equality

detR*p,, (€) = detR*p,, (') ® detR*p,,, (E").

o Leto: S — C be a section of the map ps and let v, be the closed immersion
o(S) xsT =2T—CxgT.
For a vector bundle F over T, we have
det R*pp, (15, F) = (det F)71,
where vy, F is the push-forward of the vector bundle F by the map t,.

Lemma 1.4.6 (Serre duality)
The determinant line bundle of & with respect to the map p, satisfies Serre duality

detR*p,, (£) = detR*p,, (5V ®p;'j}KC/S) ,
where Kejg is the relative canonical line bundle of the family C/S. We note that
PuKess = Kexor/7-

Lemma 1.4.7 Let € be a vector bundle over C xg T and F a vector bundle over C/S. If
det(&) is independent of t € T, then for o : S —> C a section of ps we have

1. det (S\U(S)XST) 1s independent of the section o.

2. If we denote v the relative degree of the bundle F' i.e. v := deg(F|,-1(5)), then
det R*py, (€@ pF) = (det R*p,, (€)™ ) @ (det &,) 7,

where E; = E|5(s)x 4T
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Lemma 1.4.8 For any base change by a S-morphism f : T — T, we have an isomor-
phism
detR'p;*(f*(S)) ~ detR*p,, (&),

where pl, : C xg T' — T is the projection map over T'.

Remark 1.4.9 Let L1 be a line bundle over T. Then the projection formula leads to the
1somorphism

det R*p,,, (€ @ pi(Lr)) = det R*p,,, (€) @ L,

where & is the restriction of € to the curve p,'(t). Note that the Euler-characteristic x(&;)
does not depend on t.

From now on and for simplicity we will denote the determinant line bundle with respect
to a morphism 7 : C xg T — T as follow

Ar(E) :=detR*m, (E),

and we omit the reference to the map if the context is clear.

Suppose S = Spec(C). Let £ a virtual universal bundle over SU(r, d), then
e The ample generator of the Picard group is expressed as follow
L=NE®p,(F)).
where F'is a vector bundle given in the section 1.4.1.

e The canonical bundle satisfy the equalities [LS97]
—on -1
L7 = Ksuors) = A (End’(€)) .

In the relative case, by Theorem 1.4.3 there is a relative line bundle £ such that we have
an isomorphism

PiC(SUc/s(T, (S)/S) = Z,C,
where L a relative ample generator (determined modulo line bundles over S). By relative
ample we mean for each closed point s € S we have

L is the ample generator of the group Pic(SUc, (7, ds)).

1.5 Classifying maps

Let &, be a family of rank-r parabolic vector bundles of fixed parabolic type a, over
C xg T with parabolic structure at the divisor D with fixed determinant § € Pic*(C/S)
parameterized by a S-variety 7. As the semi-stability is an open condition we get rational
maps from 7 over S, we assume the existence of parabolic bundles having semi-stable
underlying vector bundles.
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e To the relative moduli space of parabolic semi-stable rank-r vector bundles with fix
determinant ¢ and parabolic type a

wT T > S Z%(T>0€*>5)

L — [gt*]

where [&;,] is the S-equivalence class of the semi-stable parabolic bundle &, := &,
over the curve C; := m; ' (m.(t)).

e To the relative moduli spaces of semi-stable rank-r vector bundles with fixed deter-
minant §,(i) € Pic%®(C/S) for all i € I and j € {1,2, ..., {;} by associating the Hecke
modifications (see subsection 1.3)

(bZ'J T - SZ/{C/S(T,(sj(i))

to— [1](&0)]
defined as follow
H] (&) = ker{€ — QI(E)}.
05(i) := 0 (=r3()as(5)) -
e The forgetful rational map (we forget the parabolic structure)

¢7- : T -——2 SUC/S(T,é)

t — [575]
We call these maps the classifying morphisms.

Remark 1.5.1

1. Suppose T is a Noetherian integral separated locally factorial and regular in codimen-
sion one S-scheme. Let V an open subset with compliment V¢, then

codim(V¢,T) = 2 = Pic(T/S) ~ Pic(V/9).
See [Har13] Chapter 2. Section 6, for the definitions and proprieties.
2. Let T be a S-scheme satisfying the proprieties of the previous remark, then

(a) If k is large enough, which is equivalent to the existence of a reel number € small

enough such that
AN . ‘
z Zij(z) a;(i) | <e

i=1j=1
Then there exists an open subset V < T satisfying codim(V°,T) = 2 where the

maps ¢ is defined and the pull-back ¢ (L) extends from V to T. i.e., one has
the implication
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E. parabolic stable => E is semi-stable (as vector bundle)

(b) If k is large enough, such that for allie I and j € {1,2,...,0;}, there is an open
subsets V;(i) < T and codim (V;(i)¢,T) = 2 where the maps ¢;; are defined.
Then the pull-backs qbfj* (L;;) extends to all the space T.

If 7 = S/\/lg‘;g(r, (ry,0) is smooth,! then it satisfies all the conditions in the first point in
the previous remark. Then for k large enough, there is a big open subset such that:

E, is parabolic semi-stable = F and H!(E) are semi-stable.

The pull-backs under the classifying morphisms ¢; ;, ¢ (we drop the reference to the pa-
rameter space) of the ample generators of Pic(SUc/s(r,d;(i))/S) and Pic(SUc/s(r,d)/S)
respectively extends to all the space SMEi5(r, an,d). We denote them by ©;(i) and ©
respectively.

Theorem 1.5.2 ([NR93]) Let £ be a relative family of rank-r vector bundles with fived
determinant 6 € Pic’(C/S) parameterized by a S-scheme T over the family ps : C — S of
curves, then we have

07 (£) = ME)™ @ det ()",

where
_d+r(l—yg)

n

N and n = ged(r,d).

¢+ T —> SUcys(r,0) is the classifying morphism to the relative moduli space of semi-
stable rank-r bundles of determinant 6 and o : S — C a section of the map ps.

Remark 1.5.3 The determinant line bundle depends on the choice of the relative famaly
in the following sense: for a line bundle L € Pic(T/S) we have

ME® ;L) = (det pn, (E@pEL)) ™" ® det R'p,, (€ @piL),
by the projection formula we get
ME® L) = (det (pn, (€) ® L)) @ det (R'pn, (€) ® L) ,

hence
ME®pEL) = (detp,, (€)' @det R'p,, () @ L~@7(1=9)

which gives the following relation
ME®pEL) = ME) @ L™,

So the line bundle ‘
AME)™ @ det (&,)%,

1See [BY99)] for more details.
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CHAPTER 1. PARABOLIC VECTOR BUNDLES AND THEIR MODULI SPACES

is independent of the choice of the equivalence class of the family £ .ie. for any line bundle
L € Pic(T/S) we have the relation

MERPEL)» @det (£, @ L)Y = ME)" @ L™ @ det (&,)" @ L™
— AM&)7 @det (E,).

Remark 1.5.4 By applying Theorem 1.5.2 for T = SUcs(r, ), we get for any virtual
universal bundle £ a relative ample generator L of the Picard group given by the formula

L:=MNE)m @det(E)™.

1.6 Parabolic determinant line bundle

Let &, be a relative family of parabolic rank-r vector bundles over C xg 7 of determinant
§ € Pic?(C/S) and fixed parabolic type a, over a smooth family of curves (C, D)/S param-
eterized by a S-variety 7. Let m, : C xg T — T be the projection map.

We assume the following condition

N ¢
(%) (k:d + Y my(i)a, (i)) A

i=1j=1

Definition 1.6.1 [BR95| We define the parabolic determinant line bundle as following

4

A

XpaT

{act (F(&)/F©) ™ @ det(€) ™,

N
)\par(g k ® ®

i=1 j=1
which is a line bundle over T /S, where
Es 1= Elo(s)xgT for some section o of the map my : C — S.
o The determinant line bundle bundle with respect to the map m, :

A(E) := det R°m,,, (€) := (det7,,£) " @ det R'7,,, (E).

o~

"~ mj (i)a (i).

1

Lb=

° Xpar:d"_r(l_g)"F%

=17

Remark 1.6.2 If (¥)is not satisfied, the bundle Ao (E) is not well-defined over T. In
this case, we take as a definition its r-th power which is a line bundle over T .
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1.6. PARABOLIC DETERMINANT LINE BUNDLE

Theorem 1.6.3 ([Pau96]) Let &, be a relative family of rank-r parabolic vector bundles
over C xg T with fived determinant § € Pic*(C/S) and of parabolic type o, parameterized
by a S-scheme T over a family of smooth projective curves s : C —> S equipped with a
family of degree N parabolic divisors given by N-sections of the map ws. Then there is a
relatively ample line bundle

O, € Pic (s ber (r, @, ) /s)

such that
VT (Opar) = Apar (&),
where Yy : T —> SMZ%(T, Qy,0) 1s the classifying morphism to the relative moduli space

of semi-stable rank-r parabolic vector bundles with determinant 0 and parabolic type a.

If we apply this theorem to a virtual universal parabolic bundle &, over T = SMZ%(T, a4, 0)
we get the expression of a relative ample line bundle

Opar = AE)*® &) (&) {det (F/(€)/F/7(£)) ™"} @ det(e,)
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Chapter 2

The Yokogawa-Maruyama point of
view of parabolic vector bundles

In this chapter we give the Yokogawa point of view on parabolic vector bundles and their
moduli space. Simpson in[Sim90] gives another description of parabolic vector bundles as
filtered bundles which can be generalized to higher dimension. Maruyama and Yokogawa
in [MY92], [Yok91] and [Yok93] give the construction of the relative moduli space of semi-
stable parabolic vector bundles with the new description and they prove that the moduli
space they constructed is isomorphic to the moduli spaces of semi-stable parabolic bundles.

N
Let C' a complex projective smooth curve and D = )] z; a reduced divisor of degree N

=1
on C' and set I = {1,2,..., N}.

Definition 2.0.1 (Filtered vector bundles [Sim90] ) A filtered rank-r bundle over the
marked curve (C, D) is a rank-r vector bundle E over C together with filtrations
E, = (Ex)ier, satisfying for all i € I the following conditions

AeR

1. Local freeness: E\; are locally free of rank-r, VA e R and Ey,; = E.
Decreasing: Ex; < Eg; for all A = B.
Left continuous: for e > 0 sufficiently small real number, Ex_.; = E);.

Finiteness: the length of the filtration for 0 < XA < 1 is finite.

Periodicity: for all real number A\, we have Ey;1,; = E\;(—x;).

Definition 2.0.2 (System of weights) Let (E);)icr er be a filtered vector bundle with
respect to the divisor D. Then we define the system of weights on x; fori € I as the ordered
gumping real numbers in the real interval [0,1] ie. 0 < X < 1 such that

for e > 0 small enough we have E; # Exi.;.
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We will assume that the jumping numbers are rational numbers. So we get for each i € I
an ordered sequence of rational numbers

0< A7) < Aoi) < ... < Ag(i) <1,

where {; is the number of jumps at the point x;.

We set m;(i) := length (E,\jyi/E,\,fl,i) the length of the torsion sheaf E, ;/Ex,_, ; supported

J

on x;. We call m;(i) the multiplicity of the weight X\;(7).

Finally we set Ao := (X\;(7),m;(?)) icr the vector of weights and multiplicities.

1<j<t;

Remark 2.0.3 By definition 2.0.1, we set
N
Ex = () B (2.0.1)
i=1
So we get a filtration E, := (E))er of E by vector subbundles satisfying the first five points

in definition 2.0.1 and for the periodicity we get for each A € R, Ex;1 = E\(—D).
We can illustrate a filtered vector bundle in the following graph

E,
£ = E),
Ej,
—e
By,
—e
\\\\A E)\g+1 - E(_D>
° . . . ] 3 ® R
)\g—l 0 )\1 )\2 )\3 Tt e )\g 1 )\14‘1

Definition 2.0.4 (Morphisms of filtered bundles) Let E, = (E))xer and Fy = (F))er
be two filtered vector bundles over the smooth marked curve (C, D). A morphism of filtered
bundles is a family of O¢-linear morphisms

Ixi Ex — F)
such that for all X = B the diagram commute
Eﬂ\ fA ]ﬁ
Ep——F —F5
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VECTOR BUNDLES

We denote the sheaf of morphisms of filtered bundles by Hom(E,, F,).

Definition 2.0.5 (filtered subbundles) A filtered bundle F, is a filtered subbundle of a
filtered bundle E, if the following conditions holds

1. F is a sub bundle of E.
2. F\ c E, forall A e R.
3. If F\ < Eg for some 8 > X, Then F\ = Fj.

Equivalently, let E, be a filtered bundle and Fa subbundle of E := Ey, If we put F\ =
E\n F, then we get a structure of filtered bundle F, over F' induced by the structure of E,.

Definition 2.0.6 (quotient of filtered bundles) Let E, be a filtered bundle over the
marked curve (C, D) a quotient of filtered bundle, is the following data

1. A filtered bundle F,.

2. A surjective filtered bundles morphism f, : Es — Fi.
r.e. Ya € R, the map f, : Ex — F)\ s surjective.

3. If we have f\(E\) < Fg for some > A, then F) = Fj.

Remark 2.0.7 FEvery vector bundle E can be equipped by a natural filtered structure, given
by
Ey\ = E(—|A\|D) VAeR.

This structure is called the special filtered structure.

Definition 2.0.8 (degree and slope) Let E, = (E)\)acr be a filtered rank-r bundle over
the marked curve (C, D). Then we define the

1. Filtered degree
1

deg(E,) = L deg(E,)dA.

2. Filtered slope




2.1. MODULI SPACE OF FILTERED VECTOR BUNDLES

2.1 Moduli space of filtered vector bundles

In this subsection we give Yokogawa and Maruyama’s [MY92] construction of the moduli
space of filtered vector bundles for a rational fixed system of weights (see Definition 2.0.2).

Definition 2.1.1 (Stability) Let E, = (E))acr be a filtered vector bundle over the marked
curve (C, D). Then E, is said to be stable (resp. semi-stable) if for all filtered proper sub-
bundles F,, we have

u(F,) < p(E.)  (resp. <).

Let w5 : C — S be a smooth family of projective curves of genus g > 2, parameterized
by an algebraic variety S over C and let

oS

C, iel={1,2,..,N},
be N sections of 7w, such that
Vi # jel and Vs e S, we have: o;(s) # 0;(s).

We denote by

D := 2 O'i(S),
i€l
the associated divisor (as the relative dimension is one). We consider the couple (C, D) as

a family of marked curves parameterized by the variety S and let 6 € Pic?(C/S) a relative
line bundle of degree d over C.

Let 7, : T —> S be a S-variety. We get a Cartesian diagram

C><5T T T

Definition 2.1.2 (Relative family of filtered bundles) A relative family of filtered rank-
r vector bundles over (C, D) parameterized by a S-variety T is the following data: a filtered
rank-r vector bundle E, = (Ex)aer over C xg T with respect to the divisor D, such that for
all t € T we have

Eole, is a semi-stable filtered bundle over the marked curve (Cs, D).

where s = m(t), Cs := 7 (s) and Dy := D|c,.
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Theorem 2.1.3 [Yok91| For a fized system of weights Ao. There is a coarse moduli
space Mo(r, Ao, d) which is a projective irreducible normal variety, parameterizing semi-
stable filtered rank-r vector bundles of degree d with fixed system of weights A\e modulo
S-equivalence over the smooth family of marked projective curves (C,D). Moreover, the
subspace M3(r, Ao, d) © Mo(1, Ao, d) of stable filtered bundles is an open subset and coin-
cides with the smooth locus.

For ¢ € Pic*(C/S) we denote by
Mo(r,Ae,0) :={Es € Mo(r,Ne,d) /| det(Ep) =0} < Mo(r, )\, d),
the subvariety of filtered bundles with determinant 0.

Remark 2.1.4 We will not give the proof of this theorem as we will see that filtered bundles
correspond to parabolic bundles and that this moduli space equals the moduli space of semi-
stable parabolic bundles.

2.2 Filtered bundles as Parabolic bundles

Proposition 2.2.1 Over a smooth marked curve (C, D). Filtered rank-r vector bundle is
equivalent to a parabolic rank-r vector bundle with respect to the same divisor D.

Proof. Let D = {x1,x9,...,xy} be a parabolic divisor over the curve C. Let E, be a
parabolic rank-r vector bundle over C' of type a,. = (k, d,m) with respect to the parabolic
divisor D. We take its Hecke filtrations 1.3.2 for each i € I

E(~a;) = HO(E) « HOTU(E) < - < HA(E) < HI(E) < HY(E) = E,

k> ag(i) > ... > as(i) > a1 (i) = 0.

We set
ao(i) = ap, (i) — k
ap,+1(i) = a1(i) + k
H=H)F)
e
Hi(E)
H(E)
M (E) = E(—x;)
° ° * ° * 13 ° R
ayg, (i) a1 (4) az(4) ag(d) 0 e ag, (i) 1 a1(4)
42: 1 O 1k 2k 3k L}c 1T + ].
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2.2. FILTERED BUNDLES AS PARABOLIC BUNDLES

And we associate to each A € R and j € {0, 1, ..., ¢; + 1} such that

aj_l(z') aj(i)

— < 7

2 <A [)\J e
the vector bundles .

We get filtrations (E\;)icraer that satisfy the definition 2.0.1. So a filtered bundle with
respect to the divisor D. Note that the system of weight is given by the parabolic weights
d = (aj(i)) i1 and the multiplicities are the quasi-parabolic type 7 = (m; (%)) er

1< 1<j<t;

Conversely, let (Ey;)aerier be a filtered rank-r vector bundle over the curve C' with re-
spect to the divisor D. By definition for each i € I there is a finite filtration for A € [0, 1]
that we denote as follow

E(—z;) = Ey i< By _ic..cEyicEy,;=E,
where the «;; € Q are the jumps for ¢ € I and satisfies
1> N > Xym1i > o> A = Aoy = 0.
We set for all i € [ and j € {1,2,...,4;}

F/(E) := ker(E,, — E/E), ,.).

(2

£i+1 E E
F/"Y(E) = ker (E — o = —E(_xi)> = {0}.
and the numerical data:

k := {.m.c{the denominators of the \;;}i ;.
(k, Ei, ﬁl) = GJ(Z) = ]f)\jﬂ

m,(i) := dime(E} (E)/FIY(E)).

So this data defines a parabolic structure on F of parabolic type o, = (k,d,ni) over the
divisor D. o

Remark 2.2.2 In [MY92] the following equality is proved

deg(F,) := J deg(FEy)d\ = pardeg(FE,) + rank(F) deg(D).

0

Proposition 2.2.3 Let E, = (E))xr be a filtered vector bundle over the marked curve
(C, D). Then we have the equivalence
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E. is stable (resp. semi-stable) as filtered bundle

§

E, the associated parabolic bundle is stable (resp. semi-stable).

By Propositions 2.2.1, 2.2.3 and the above remark, we get the following theorem.

Theorem 2.2.4 Let 7w, : C —> S be a smooth family of projective complex curves equipped
with a divisor D = Y., 0,(S) of relative degree N given by N sections (0;)er of the map
7s. For fized parabolic weights e, = (k,d, m) we have an isomorphism of S-schemes

© 0 Mired) — MEL(ras.d)

E, —  w(FE,) = E,
where to the system of filtered rational weights A\, is given as follow
1> N > Xym1i > o> A = Aoy = 0,
we associate the system of parabolic weights, for alli € I and j € {1,2,...,0;}

a;(i) == kX;; and k := L.m.c{the denominators of the \;;}viv;.
Classifying maps Let &, be a family of filtered rank-r bundles over the smooth family
of marked curves (C, D) over S parameterized by a S-variety 7 with fixed determinant

§ € Pic’(C/S) and fixed weights, we get for each A € R a rational map to the moduli space
of semi-stable rank-r vector bundles of fixed determinant

ol T - SUes(r,6(N))
t — Exle,
where for each t € T we associate the curve
G i= M () = w2 (1))
and for each A € R we associate the line bundle
5(N\) := det(&y) € Pic?™M(C/S)
we set n(A) = ged(r, d(N)).

If T = M.(r,\.,d) is the moduli space of filtered bundles by Remark 1.5.1 the maps ¢}
are defined over big open spaces that depend on A € R so the pull-backs of any line bundle
extends and we denote by ©()) the pull-back of ample generator of the relative Picard
group of the moduli space SU¢/s(r,d(N\)) by the map ¢1. Note that ¢] coincides with the
map ¢7 given in Subsection 1.5.
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2.3 Some proprieties of filtered bundles

Let (C, D) be a smooth marked projective curve. Let E, = (FE))r be a filtered vector
bundle over (C, D) and let v € R we define the ~-shift filtered bundle E [v], by

E[], = Exey, YAER.

Definition 2.3.1 (Tensor product) Let E, and F, be two filtered vector bundles. For
each A € R, we set

(E.@F.),\:zSpan< |_| E,\1®F)\2>.

A1+A2=A

Proposition 2.3.2 [ Yok95] Let E, and F, be two filtered bundles. Then the tensor product
and the shift operation commutes, i.e. For v € R, we have

(B[], ®F). = (E.® Fy],)s = (E.® F.) 7],
Definition 2.3.3 [Y0k95] Let E, and F, two filtered bundles. For each A € R we set
Hom(E,, F,) := Hom(E,, F [A],).
Remark 2.3.4 If we denote by E, the associated parabolic bundle to F,, we get
Hom(E,, E.)y = parEnd(E,).

Proposition 2.3.5 [ Yok95]| Let E, and F, be two filtered bundles, then
For each v € R, there are natural isomorphisms

Hom(E., F\) 7], = Hom(E [=7], , Fo)e = Hom(EL, F [7],)..

To define the dual of a filtered bundle and a notion of filtered morphisms that cor-
responds on the parabolic side to strongly-parabolic morphisms, we define the following
operation on filtered bundles. Let E, be a filtered bundle over (C, D)

e We associate for each A € R the following filtered bundle
E)\ = lﬁll?}Eg

which is a right-continuous filtered bundle denoted E,. Thus a parabolic bundle by
Proposition 2.2.1. In fact if the filtration of FE, is

E(—D) = EAZ [ E)\£71 c ... C E)\l [ E() = E,
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with weights
1> N> 1>...> )M =0

Then E, is given by the filtration

E)\ = E>\j_1 for all >\j—1 <A< )‘j for j S {1,2, 7f + ].}

where \g =Xy —1and Ay =M + 1.

E,
E=E)\,_
° S ~
By,
-~ ~
By,
.7
\\\\ EM_E(_D)
° ® ® . . o ® R
A —1 0 XN Ao Ay Ar 1 A+l

e We define the dual filtered bundle £ by
E) :=Hom(E,,O¢).
where the trivial line bundle is equipped with the special structure.
Remark 2.3.6 If we denote by E, the associated parabolic bundle to E,, we get
Hom(E., E.)o = SparEnd(E,).
Proprieties 2.3.7 Let E, be a filtered bundle. Then we have
1. For a vector bundle F equipped with the special structure 2.0.7, we have

Hom(E,, F)y = Hom(@ [—1] ., F) = Hom(E_A(D),F).

2. EYY is canonically isomorphic to E,.
3. There is a canonical isomorphism
Hom(E,., F.). = (E; ® F.), .
Remark 2.3.8 Let E, a filtered bundle over the marked curve (C, D).
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1. We note that the underlying bundle of EY is EY(—D).
2. We have the following isomorphism of filtered bundles
Hom(FE,, E,); =~ Hom(E,, E,).,
but, in general

Hom(FE,, E.)" # Hom(E,, E,).

2.4 Parabolic transformation group of SM" (r, ., )

Let C' be a smooth projective complex curve and D = {x1,xs,...,zx} a degree N reduced
divisor. Let E, be a parabolic bundle of parabolic type a, with respect to the divisor D.
We recall that for eachi € I and j € {1,,2,...,£;} the Hecke modification H (E) is equipped
with a natural quasi-parabolic structure induced by the structure of E, as follows

1. Over C\{z;} we have an isomorphism of sheaves
f e H(B)levisy — Elove-

2. For q # 1, we take the pullback by f of the filtration over z,
Fr(H](E)) = [T (F(E)).

3. At the point x; we associate

Ey,/F™ (B) —0

0 —H! (F/*(B)) = HI(E

\/

F]+1 )

N

H] (FTU(E)) = ker(H] ()|, — F/ " (E))

We call the linear subspace

the Hecke transform of F/*'(E).
4. Take the filtration at z;

Bl., = FN(E) = FX(B) > --F(E) = - > F/\(E) > F/*\(B) - {0}

as the image of f is in F/™'(E), we associate
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e for s > 7 + 1, we take the pull-back by f

HI(B)|o, = [ (F)TU(E) > fHEN(E) 2 2 f7H(FH(B)) = f({0})

e for s < j+ 1, we get a filtration of E|,,/F/ "' (E)

El,, FNE) F5(E) F/(E)  F/'YE)
1 ° = AZ+1 S EEEEEE :—f B EEEEEE ) ‘:—1 ) ZA+1 = {0}
F7(E)  FT(E) F7(E) F7(E)  FT(E)
Note that B
j j+1 ~ T
7‘[{ (sz (E)) ~ W ®OC(_5L’i) x;

thus, H(E)|,, gets the induced filtration of same length as that of E|,,.

Hence 7—[5 (E) gets a quasi-parabolic structure of same type as E, over the same divisor.

Definition 2.4.1 (Basic transformations [AG21]) A basic transformation of a quasi-
parabolic vector bundle is a tuple T = (1,s, L, H) consisting on

e An automorphism 7 : C — C and 7(D) = D.
o A signse{l,—1}.
e A line bundle L € Pic(C).

e Hecke modifications. That can be expressed for full flag quasi-parabolic structure as
follows: Let H = % h;x; be an effective divisor supported on D such that 0 < h; <
(r—1) forallie 1[:1

Given a quasi-parabolic vector bundle Ey, then a basic transformation T acts as follow

T* (L Hu(FEy)) s=1
T(E,) :=
T (LQHu(Ey))" s=-1
where we define the transformation Hy(E,) as follow

——h; =ho ——hN
HH::H:L'LOHZ O"'OHN-

and ﬁ? s given by

a7 2 2 2
Hil::Hion'o"'oHi
- /

Y

hq

H? is the standard Hecke modification at the point x; with respect to the subspace F?(E).

2

If det(E) = 6, we set T(0) := det (T(Ey)) the determinant of the transformation.
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Example 2.4.2 (Full flag case) we have
1. H = E,®Oc(—,).

™ (L"®6(—H)) s=1
2. T()):=det (T(E,)) =
™ (L"®6(—H))" s=-—1.

Parabolic system of weights under basic transformations

Let E, be a parabolic rank-r bundle over the curve C of a full flag parabolic type a, =
(k,d,m) with respect to the parabolic divisor D = Y., z;. (see Alfaya-Gomez[AG21]).

1. Let 7: C — C be an automorphism and 7(D) = D, then
7(a;(1)) := a; (7 (i)
we denote the associated parabolic type by 7 ().

2. Take the parabolic dual £, then we associate the weights

aj (i) := 1 —a;(i).
we denote the associated parabolic type by « .

3. Twisting with a line bundle does not affect the parabolic weights.

N
4. Let H = ). h;z; be an effective divisor supported on D such that 0 < H < (r—1)D.
i=1
We define Hpy(a)
Qj4h, (Z) — A14h,; (Z) j + hl <r
HH<6) =
aj+hi_7«<i) — A14h, (2) +1 j + hz > T.
we denote the associated parabolic type for all i € [ and j € {1,2,...,¢;} by "Hf ().

So, if @ is a parabolic system of weights with respect to the divisor D over C, we define
for a basic transformation 7' = (7, s, L, H)

Hp(a@);(m7'(3)) s=1
T(d) :=
L= M@)oy (71(0) s = —1.
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Chapter 3

Hitchin connection in algebraic
geometry

In this chapter we introduce the van Geemen-de Jong approach to the construction of a
connection on a direct image of a line bundle by giving a heat operator on the line bun-
dles. We will define connections, heat operators, the relation between them and the van
Geemen-de Jong theorem, which is the algebraic geometry analogue of Hitchin’s theorem
in Kahler geometry. We follow [GdJ98].

Throughout this section we take 7 : M — S, a smooth surjective morphism of regular
C-schemes, we have the natural exact sequence on the tangent bundles

0 Tru/s Ty —2% 7% (Tg) —= 0. (3.0.1)

We define the sheaf of differential operators and the sheaf of relative operators.

Definition 3.0.1 (Differential operators) Let E be a locally free sheaf over M. We

define the sheaf DE\Z)(E) of differential operators of order at most k over E by induction
on the degree as follow:

e Vk e N, we have
DV¥)(E) — Endc(E).

1s a sub-sheaf of C-linear maps of E.
e DU)(E) = Endo,,(E).
o An element P e D&Z)(E) is a C-linear map
P.:F—FE
such that for each f € Oy we have
[P, f]:= Pf — fPeD " (B).
The element [P, Q] is called the commutator of the differential operators P and Q.
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We define the sheaf DE\Z/S( ) of relative differential operators with respect to the map
m: M — S as a the sub-sheaf of operators that are m=1(Og)-linear.

Definition 3.0.2 (Symbol map) We have the natural inclusion for each k € N
DY V(B) — DI(E).
Thus we get a short exact sequence
0—= DV (E) — D) (E) — Sym*(Tw) ® End(E) — 0.
where Sym®(Ty,) is the k-th symmetric power of the tangent bundle. The natural map
Vi : DE)(E) — Sym*(Th() ® End(E),

1s what we call the symbol map of order k.

By restriction to the subsheaf DM/S( ) of relative differential operators, we get a map

Vi: D (B) — Symh(Tae) @ Bnd(B)
with image in the sub-sheaf Sym"*(Ths). Hence

Vi D) g(B) — Sym*(Tays) ® End(E).

we call it the relative symbol map.

3.1 Connections on vector bundles

We follow Atiyah’s description of Atiyah algebroids and exact sequences [Ati57] in the
context of vector bundles rather than principal bundles.

3.1.1 Atiyah classes

Definition 3.1.1 (Atiyah Class) Let E be a vector bundle over M. Then the Atiyah
exact sequence associated to E is given by the following pull-back

0—=End(E) —= Au(E) —2 T 0
H | o
0 — End(E) — D) (E) —2 T) ® End(E) — 0

The sheaf Ap(E) is called the Atiyah algebroid of E. We denote its extension class by
atpm(E). As an extension

atpm(E) € Ext' (T, End(E)) ~ H' (M, Q) ® End(E))

as we deal with locally free sheaves.
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For a line bundle L € Pic(M) the Atiyah sequence coincides with the sequence

Ty 0 (3.1.1)

and its extension class
atpm(L) € HY(M, Q).

Note that the Atiyah class can be given as follows: we tensorize the Atiyah class (3.1.1)
with the cotangent sheaf Q},, we get

0——=End(E) ® QY — Au(E) @ Q4 2> Ty ® QU —= 0
the connecting morphism in the long exact sequence in cohomology is
& : H (M, End(Th)) — H' (M, End(E) ® Q)
the class atp(E) is given by d1(Id). We have the following lemma. [Ati57].

Lemma 3.1.2 Let X be a smooth algebraic variety, L a line bundle and k a positive
integer. Then we have an isomorphism of short exact sequences

0 OX Ax(Lk)v;»TX—>0

L

0 Oy Ax(L) 2Ty 0

For 7 : M — S an S-scheme and E a vector bundle over M, there is a relative version
of the Atiyah algebroid denoted by Axs(E), given by taking the pull-back

0——s End(E —>AM/S(E) _>TM/S —0

T

0 —— End(E) — Ap(E) = Ty 0

As an extension, we have ats(F) is a global section of the sheaf Rlﬁ*(Q}WS ® End(F))
over S.i.e.,

atpys(E) € H (S, Ext' (Thys, End(E))) =~ H® (S, R'm ()5 ® End(E))) .

For a line bundle L € Pic(M), we denote its relative Atiyah class by [L] € H (S, Rm, (Q}VI/S)> .

For our purpose we need the trace-free Atiyah algebroid of vector bundles with fix
determinant. We have a direct sum decomposition End(E) = End’(E) ® O, and let
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denote by ¢ : End(E) — End’(E) the first projection map. Then the trace-free Atiyah
algebroid is given by the push-out of the standard Atiyah sequence by the map ¢ as follows

0 ——= End(E) — Ap(E) —= Ty 0

oo

0 —End’(E) — A (E) — Ty —0,

With the same method we define the trace-free relative version Atiyah algebroid Af /S(E).

Definition 3.1.3 (Lie algebroid structure) The sheaf Df\l/l)(E) is equipped with a nat-
ural Lie brackets given by the commutator. In fact for any P, Q) € DS\;)(E) we have

[P,Q] e DY (E).

Thus we get a C-bilinear application

3.1.2 Connections / Curvature

We will follow Atiyah’s approach to define connections on vector bundles as splitting of
the associated Atiyah sequence.

Definition 3.1.4 (Connection) Let E be a vector bundle on M. A (Koszul) connection
V on E is a Opq-linear splitting of the Atiyah exact sequence associated to the vector bundle
E

0 ——=End(E) —= Au(E) Th 0.

~_

v

Definition 3.1.5 (Projective connection) A projective connection is a O p-linear split-
ting V of the exact sequence

~_

v

Definition 3.1.6 (Flat connection)

A (projective) connection is said to be flat (or integrable) if it preserves the Lie bracket.
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3.2 Heat operators

Let L € Pic(M) be a line bundle over M such that 7, L is a locally free sheaf over S. We
are interested in the subsheaf of differential operators of degree 2 given by

Ways(L) = D\ (L) + Dy 5(L) = DY (L).
We also denote V5 the restriction of the symbol map to this sub-sheaf
Vs : Ways(L) — Sym*(Thys),
and define the sub-principal symbol
os : Ways(L) — 7T,
such that for s a local section of L and f a local section of Og we have, for all D € Wy,s(L)
(os(D),d(n*f)) = D(z* fs) = fD(s).

The elements of the sheaf Ways(L) satisfy the Leibniz rule (this follow from proprieties
of the second order symbol map)

D(fgs) =<Va(D),df ®dgys + fD(gs) + gD(fs) — fgD(s).
Thus we get a short exact sequence
0 —> D) s(L) — Ways(L) =552 7(Ts) @ Sym*(Tiyys) — 0. (3.2.1)
We now define the heat operators.

Definition 3.2.1 (Heat operator [GdJ98]) A heat operator H on L is an Og-linear
map of coherent sheaves
H : TS —> ’/T*WM/S(L)

such that og o H = Id, where H is the Op-linear map associated to H by adjunction
I{I : W*TS -_— WM/S(L).

Definition 3.2.2 (Projective heat operator) A projective heat operator H on L is an
Og-linear map of coherent sheaves

H TS I (W*WM/S(L)) /OS
such that o o H = Id. The map H is associated to H by adjunction.

Definition 3.2.3 (Symbol of heat operators) The symbol map of a (projective) heat
operator H is the map

pu = mx(02) 0o H : Tg —> 7T>x=Sme(T/V‘/S)'
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3.3 The van Geemen-de Jong approach

Let m : M — S be a smooth surjective morphism of smooth schemes and let L be a line
bundle over M/S, such that m, L is a vector bundle over S and let H be a (projective) heat
operator over L. We define a (projective) connection on m,L by associating a covariant
derivative

Vo :meL —> m,L,

which we define as follows: locally on U an open subset in S, let 8 € Ts(U) a vector
field on S we denote by 7~1(6) the corresponding section of 7= (Ts)(7~!(U)) and for all

s € mo L(U), we define
V(s) := H(m~'(0))(s).

And as the sub-principal symbol of H(7~1(0)) is 7=%(#), the Leibniz rule is satisfied. In

fact for any f € O5(U) we have

Vo(fs) = H(x=(0))(7"(f)s)
=7 (0(f))s + 7 (f) H (7 (0))(s)
= 0(f)s + fVps.

If the (projective) heat operator preserves the Lie bracket then, the associated (projective)
connection is flat.

3.3.1 A heat operator for a candidate symbol
In [GdJ98], van Geemen and de Jong give conditions which imply that a candidate symbol
p:Tsg:—> W*SymZ(TM/S),

can be lifted to a (projective) heat operator, i.e. , there exists a (projective) heat operator
H such that we have

p = 0so H = p.

For any line bundle L € Pic(M), we have the exact sequence
0 — Thyys —> D 5(L)/Op —> Sym®(Tpyys) — 0,

The first connecting morphism on cohomology with respect to the map m give rise to a
map
Ly W*Sme(TM/S) — Rlm, (TM/S) .

Proposition 3.3.1 ([Wel83] and [BBMP23]) For a line bundle L € Pic(M). The map
g s given by the following formula

hp = UL — o (% [KM/5]> .

where K s is the relative canonical line bundle of m: M — S.
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The Kodaira-Spencer map is given by the first connecting morphism of the short exact

sequence 3.0.1
Kamys @ Ts — R'm Tays.

Now we can state the following theorem.

Theorem 3.3.2 (van Geemen—de Jong, [GdJ98], §2.3.7)

Let L € Pic(M) be a line bundle and 7 : M — S as before, we have that if, for a given
map p:Ts — ’ﬂ'*SmeTM/S

1. kpmys +prop =0,
2. cupping with the relative Atiyah class
U[L] : mThys — R'mOp
18 an isomorphism, and
3. m.0Op = Og.
Then there exists a unique projective heat operator H whose symbol is p.

Proof. We start by noting that the map u [L] in the second hypothesis can be seen as the
connecting homomorphism in the long exact sequence associated the short exact sequence

\Y%
0 O D) (L) > Thys 0

So by the second and third hypotheses we get
Os = Oy = 7,0\ 5(L).
Now, consider the long exact sequence associated to the short exact sequence 3.2.1

(1)

Oéﬂ'*DM/S(L) W*WM/S<L)ﬁTs@ﬂ'*Sym2(TM/S>

/

R'm,Di{} s(L) —= R'm,Ways(L)

we obtain a commutative diagram with exact rows and columns

0 T+ O T+ O 0
|
0— 1Dy} g(L) —— mWys(L) Kerd 0
0 0 (T Ways(L)) /Os Kerd 0
|
0 0
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therefore an isomorphism

(mWays(L)) /Os = Kerd.

Now a projective heat operator with symbol p is a lift of p relative to the second order
map
(meWays(L)) /Os

7

Va

Ty

5 mSym*(Thys)
which exists (using the second and third point ) if and only if the image of the map
TS — TS @W*Sym2(TM/5), 0 — (49, p(@))

is in the kernel of §. It remains to prove that this is equivalent to the first hypothesis. In
order to do this , let us decompose o = d; + 05 into its two component

51 : TS - RIW*D_S\IA)/S(L) and 52 . W*Sme(TM/S) — Rlﬂ'*D.S\I/[)/S(L)
We can check that
Rlﬂ (vl) o 51 = RKMm/s and R17T (vl) l¢) 52 = Ur.

Take the long exact sequence associated to the Atiyah sequence 3.1.1 of L, we get

ulL
s> W*TM/S A W*OM — Rlﬂ'*’Dﬁ\lA)/S(L> - RlT"*TM/S —

the natural map
R'zw (V1) : R'm, DY) (L) — R'mThys,

is injective as by the second hypothesis. Thus
(0, p(0)) € Kerd < R'7 (V1) 6(0, p(6)) =0
< (kamys + prop) (0) =0,

for any local section 6. =

3.3.2 Flatness criterion

Theorem 3.3.3 ([Hit90a]; [BBMP23], Theorem 3.5.1) Under the assumptions of The-
orem 3.3.2 the projective connection associated to the symbol p is projectively flat if the
following conditions holds
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1. For all local sections 0,0" of Ts, we have

{p(0), p(6)} 7z, . =0,

M/S

i.e. , the symbol, Poisson-commute with respect to the natural symplectic form over
the relative cotangent bundle Tj\“/l/s.

2. The morphism jy, 18 injective.
3. There are no vertical vector fields, m,/T'hys = 0.

Proof. We denote by H the projective heat operator, its flatness is equivalent to the van-
ishing of the operator

(H(6), H(0)] — H([6,0]) € . (Df’j/s (L) + D) (L)) /Os.

its symbol is
Vs ([H(0), H(®)]) € mSym*(Tays)

by the isomorphism of Poisson-algebras given by the natural map

T Sym™ (Thys) = T (Oat)m

where the right hand side is the weight m part under the action of G,,-action equipped
with the natural Poisson-structure. And the Poisson-structure on right hand side is given
by the commutators over the sheaf of operators of order at most m. Then by the first
hypothesis, we get

{Va(H(0)), Vo(H(0)} 1y, , = {p(0), p(0')}73, . = 0.

Thus the operator is at most of degree 2 and acts only on the fibres of the map 7 : M — S

[H(O), HO')] - H([0,07) € 70 (DY) /Os.
Now we take the exact sequence
0 —> Thyys — Dt 5(L)/Opg —> Sym*(Tiyys) — 0,

the associated long exact sequence
0 — mThys — s (D,s\%()/s(L)/OM) — mSym*(Thys) - R'my (Thys) — -y
by the second and third hypothesis we get the isomorphisms

0= mTamys = T <DM/S( )/OM) = T (D§\4/s< )) /Os.

thus concluding the proof. O
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Chapter 4

The Hitchin connection for parabolic
non-abelian theta functions

In this chapter we prove the main theorem which generalises the algebro-geometric con-
struction of Hitchin’s connection given in [BBMP23] over SUcs(r) the relative moduli
space of rank-r vector bundles with trivial determinant over a smooth family of complex

projective curves of genus g > 2, to Sj\/l’é‘/bg(r, a4, 0) the relative moduli space of parabolic

rank-r vector bundles of fixed determinant § € Pic*(C/S) and of fixed parabolic type ov.

Let S be a smooth complex algebraic variety. We take a smooth family of projective
curves 7y : C —> S of genus g > 2 and take D a divisor given by N sections of the map 7
such that the relative degree is N, with no non-trivial points (i.e. Vi € I such that ¢; > 1).
Let 6 € Pic?(C/S) a line bundle over the family of curves. Let &, be a family of rank-r
parabolic vector bundles of fixed parabolic type a, and fixed determinant § over (C, D)/S
parameterized by a S-schemes 7. We shall denote the fibered product by the diagram:

XZZCXST ik T
C,D S
(7 )Q/

We set D := 7' (D) =D x5 T.

-

» As a working hypothesis, we suppose that the parabolic system of weights a,=(r, @, m)
is generic ! in the following sense:  au-parabolic semi-stability < a,-parabolic stability.

1See [BY99)] for more details on genericness of parabolic weights
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With this working hypothesis, the moduli space SM?;;(T, (4, 0) is smooth over S, and
the Picard group is maximal.i.e., all line bundles on the Quot scheme multiplied by the
universal flag varieties descend to the moduli space. See [Pau96], [L.S97].

4.1 Parabolic Atiyah sequences and algebroids

We define the quasi-parabolic and strongly quasi-parabolic Atiyah sequences and alge-
broids, that we use to study deformation of marked curves equipped with quasi-parabolic
vector bundles and to show existence of the Kodaira-Spencer map in the parabolic case.
We recall Yokogawa's isomorphism (Proposition 1.1.7)

parEnd(£)" = SparEnd(E) ® O¢(D).

Definition 4.1.1 (Quasi-parabolic Atiyah algebroid (QPA))

We take the push-out of the relative Atiyah exact sequence of the parabolic bundle €, by
the inclusion End’(£) < SparEnd"(£)¥ = parEnd"(£)(D). We get

0 Endf(é‘) A% 17 (E) Ty T 0
0 — SparEnd"(&)¥ Ay i Ters —=0

Then the QPA sequence is given by tensorizing the exact sequence above by Oy (=D):
0 — parEnd’(£) — A () — 7 (Teys(~ D) —= 0,
and the QPA algebroid is given by
AYF(E) = A ®Ox (-D).

Definition 4.1.2 (Strongly quasi-parabolic Atiyah algebroid (SQPA))

We take the push-out of the Atiyah exact sequence of the parabolic bundle E, by the inclusion
End’(€) < parEnd’(£)Y =~ SparEnd’(£)(D). We get

0—> Endf(é’) — A% (E) Tx/r 0
0 — parEnd" (&) Asy mule/s —0

Then the SQPA exact sequence is given by tensorizing the exact sequence above by Ox (=D):

0 — SparEnd"(&£) — A%jt%par(é') — 1 (Teys (—D)) —=0,
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and the SQPA algebroid is given by
A (E) == A ® Ox (-D).

Remark 4.1.3 The definitions of A(;(’I/”};(E) and Agg%’pm(é’) are canonically attached to
the family of marked curves (C,D) and depend only on the quasi-parabolic structure and
not on the parabolic weights a. In particular by construction these Atiyah algebroids are

wmvariant under Hecke modifications.

4.2 'Trace complexes theory

The main ingredient in [BBMP23] is the description the Atiyah class of the relative am-
ple generator £ of the relative Picard of the moduli space SUc¢/s(r,d) using the theory
of complex trace, Sun-Tsai isomorphism (Theorem 4.2.1), Beilinson-Schechtman isomor-
phism and Bloch-Esnault complex (Theorem 4.2.2). Here we do not need the definition
of the complex trace, we use Sun-Tsai characterization of the (-1)- Bloch-Esnault term as
definition.

We recall the following fibre product

X :=C Xg SZ/{C/S(T’, 5) br SUC/S(ﬁ 5)

Pw Pe

C S

Ps=Ts

Let U be a universal vector bundle over C xg SUcs(r,0). The following theorem give
a characterization of the (-1)-Bloch Esnault algebra OBEZ}{C/S /S(Z/I), that we will use as a

definition.

Theorem 4.2.1 ([ST04]) There is a canonical isomorphism of short exact sequences

0T 51405 — Axysue ) —End(U)” —0

0 K/\’/Suc/s OBgZiC/S/S(U) = End(U) ——0

where Kx/su./s s the relative canonical bundle with respect to the map py,.
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Theorem 4.2.2 (Beilinson- Schechtman & Bloch-Esnault [BS88], [ET00])

Let U be a virtual universal bundle over X = C xgSU¢/s(r,0). Then we have the following
isomorphism of exact sequences over SUc;s(r,0)

0 —— R'pu, (K/sue,s) Rlp,, ("B~1(U)) R'p, (End’(U)¥) —=0
2r~idj: lz :l—Tr
0 OSUC/S ASMC/S/S ()‘(Endo (U)) TSUC/S/S 0

Combining these two results we get the following theorem, proven in [BBMP23] for
§ = O¢, but their proof work for any relative line bundle § € Pic*(C/S).

Theorem 4.2.3 We have the following isomorphism of short exact sequences over SUc;s(r, d)

0 —— R'pp, (Kx/su) — R'pn, (on/su () V) —— R'py, (End’U)¥) —0

Sld |~ Zl :lld

0 Osu, Asuies(L) - Tsue/s

0

where L is the relative ample generator of the group Pic (SUc(r,9)/S) andn = ged(r, deg(d)).

Proof. By Theorem 4.2.1 and 4.2.2, one has the following isomorphism of short exact
sequences SUcs(r,0)

0—— Rlpn* (KX/SMC) - Rlpn* <A9Y/SZ/{C (u) v) - Rlpn* (Endo (u) V) —0

2rid | = lg ;j_T'F

0 Osu, Anys (AMEnd’(U))) — Tstie/s

By Drezet-Narasimhan 1.4.3 theorem and [LS97], we have
MEnd*(U)) = Ky, = L7

Hence we get the following isomorphism

0— R'pn, (Kxsu.) —= R'pn, (AOX/SMC (u)v) —— R'p,, (End’(U)") —0

2rid | = l: :]—TT

0 Osu, Ay (L727) Tsue/s
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and by applying Lemma 3.1.2 (for k = —2n and L = L), we get

0— Rlpn* (KX/SZ/{C) - Rlpn* (Ag(/SUC (Z/{)V> —_— Rlpn* (EndO(U)v> —0

2rid | = =~ >~ | -Tr
on v
0 Osue Asuys(L72) - Tsye)s —0
o _ v
0 Osue - Asuess(L7) ! Tsye)s —0
~ . ~ . >
0 Osu, - Asu, /S (£) Tsuess 0

The right vertical map is —1'r, the vertical left map is 2r/d and the extension class of
the last exact map is —2n [£] in H° <S, R'm, (Q}Wcm(n ) /S>>. Hence we conclude that the

extension class of the exact sequence
0— R'py, (Kajsuc) — R'pay (AOX/SL{C U) V) —— R'p,, (End’(U)") —0

equals ™ [L]. o

4.3 Parabolic Bloch-Esnault complex

Now, we work over SMEfg 1= SMEJ(r, ax, 0) the relative moduli space of semi-stable

rank-r parabolic vector bundles of fixed parabolic type v, with determinant ¢ € Pic?(C/S)
over C/S. We have the following fibre product

T e SMY
(C,D) - S

g4

We denote by &, a virtual universal parabolic bundle over XP*" = C x4 S./\/lg‘/lg. For our
need we define the (—1)-term of the parabolic Bloch-Esnault complex.

Definition 4.3.1 We define the (-1)-term of the parabolic Bloch-Esnault °P~1(E), as a
pull-back of the (-1)-term of the Bloch-Esnault complex °B~(E), by the natural inclusion
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parEnd’(€) < End’(&), as follows

0 —= Kxparjsppper —="P~H(E) —— parEnd"(£) —=0

| | |

0 —— K ypar s pprar — "BH(E) End’(£) ——0

where K ypar spqpar 15 the relative canonical line bundle relatively to the map m,.

We apply R'm,, to the (-1)-Bloch-Esnault term exact sequence

00— OSMIéaT - Rlﬂ-n* (0P_1(8)) — Rl’ﬂ'n* (parEnd()((‘:)) ~ TSMEGT/S —

| | |

0— Ospgery — R'mo, (UB1(E)) R'7,, (End’(€)) ————0

The exact sequence below is the pull-back of the Bloch-Esnault exact sequence of the vector
bundle £ seen as a family over the space SUc¢/s(r,0) by the forgetful morphism map

o S/\/lzc"}g(r, iy, 0) —> SUc(r, )
which can be lifted to a map on the fibre product
¢:Cxg SMg‘;g(r, Q,0) —> C x g SU¢s(r, 0)
we can choose a virtual universal bundle U over C x g SU¢/g(r, d), such that
ot (U) =&
Moreover the differential map
dg : Tsaperss — % (Tsues)

is given by applying R'm,, to the natural inclusion parEnd’ (€) < End’ (¢* (U)) .

So we get an identification theorem in the parabolic configuration of Theorem 4.2.1.

Proposition 4.3.2 For a virtual universal parabolic bundle £, over SMZ%(T, a4, 0). There
is an isomorphism “P~1(E) ~ A%Z:’/?MW(S) (D)”, such that

0 — Kpar /s ppar Op-L(E) parEnd’(£) —=0

I - I

0 — K ypar s prar — [AS;’;ZI;?MW (€) (D)] —  parEnd®(§) —0

64



CHAPTER 4. THE HITCHIN CONNECTION FOR PARABOLIC NON-ABELIAN
THETA FUNCTIONS

Hence we get the following parabolic version of [BBMP23] Theorem 4.4.1.

Theorem 4.3.3 Let £,=(E))xer be a virtual universal parabolic bundle over My = SMeig(r, o, 6).
Then for each A € R, we have the following isomorphism of short exact sequences over

SMeig(r, e, )

Ry (Ko jate) = R, ([ AR, (E0(D)] ) —= R, (parEnd®(£3))

o |~ L: lz

Oum.© Anm.ss (O(N)) 0 Trm.s

where ©(X) is the pullback of the ample generator of the group Pic (SUes(r,8))/S) by the
classifying maps

P 1 Moo= M(r, A, 0) — SUcss(r,5(N))
5. La— (C:)\

set d(X\) = deg §(\) and n(\) = ged (r,d(N)), which is equivalent to the equality
r

oy = (OO € H (5, R, ()

where we denote by Ay the extension class of the first exact sequence.

The Theorem is equivalent in the parabolic representation to the following theorem
using Hecke modification, we recall that Hecke modification acts over the moduli spaces
SM%%(’/’ i, 0), we get an isomorphism over S

HI

2

SME5(r 00, 8) —> SME (r.H](0n), 1](0)

i — 2 (B). (4.3.1)

We denote by ©;(i) the pull-backs of the ample generators of the Picard groups Pic (S /\/l:’c”;g /S )

under the composition of the maps 7—[; followed by the forgetful maps to the moduli
spaces SUc/s(r, 0;(1)) where H](6) = d;(¢) and © the pull-back of the ample generator
of the Picard group of SUc¢,s(r,é) by the forgetful map. Set n = ged(r,deg(d)) and
n;(i) := ged(r, deg(d;(7)))

Theorem 4.3.4 Under the same hypothesis. Let £, be a virtual universal parabolic bundle,
we have the following isomorphism of short exact sequences over SME (r, ay, d)

R'm,, (KXW/SMZM);) Rm,, ([Ao,par,st (! (8))(D)]V) — ~ R'm,, (parEnd° (Hf ©)))

Arar S MBS
Ul; L; -

. Vi
OspparC As e s (0;(i)) Tspper s
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We denote the extension class of the first exact sequence by A;(i) and the Atiyah class of

a line bundle L by [L]. Then the theorem is equivalent to the equality of global sections
r . .
—=Aj(i) = [6;(1)] € H (S, R'me, (Upppers)) -

n;(i)

With the same hypothesis we have

R (K pper js pqper ) = R, <[A0’par’5t (&) (D)] v) — R'7,,(parEnd’(£))

Xpar /S MEST
j v, ]
C
Osmper Aspzars(0©) Tspper s

which is equivalent to the equality
%A —[6]e 1" (S, Ry (O e /S)) .

Proof. Modulo shifting by a rational number A in the filtered configuration which corre-
sponds to Hecke modifications in the parabolic sitting, it is sufficient to prove the theorem
for A = 0. Hence take the forgetful map

¢ SMejg(r, i, 0) —> SUcs(r, )

which can be lifted to the fibre product over S

C xg SM?}; ¢ C x5 SUcss

Tn l Pn

SMEs ; SUcys

let & be a universal parabolic bundle over C xg S/\/lg‘;g and let denote by U a virtual
universal bundle over C x g SUc/s such that ¢* (U) = £. Take the pull-back of the exact
sequence given in Theorem 4.2.3 by the forgetful map ¢, we get

0—=6" (R'pos (Kajsu)) — ¢ (R'puy (A% )" ) ) —= " (B'pn, (End’(@)*)) —0

Fld |~ :l ~ |Id

Osaper ¢* (Asuc/s(L)) ¢* (Tsue/s)

V1

0

take the differential map
d¢ : Tsaarjs —> & (Tsue)s)

which correspond to taking the first direct image R'm,, of the natural inclusion of sheaves

parEnd’(€) — End’(&) = ¢* (End’(U))
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Now, we take the pull-back of this isomorphism of exact sequences by d¢ by the two
realisations as follows

0 Osprer R'm,, (*P~1(€)) R'm,, (parEnd’(£)) —0
| [«
0 Ospzar R'm,, (*B71(&)) R'7m,, (End’(£)) ——0

0—= 6" (R'pu (Kssue)) —0* (B'pn, (Ao @) ) ) — 6" (R'pn, (End’(U))) —0

fLIsz ZL ~|1d

0 OSMICMT (b* (ASZ/{(:/S(E)) v ¢* (TSZ/{C/S) ——=0
| | .
0 OSMZC)M ASMPM/S(Qb* (‘C)) TSMP‘”/S ——)

By construction the first and the last exact sequences are isomorphic as they are pull-backs
of isomorphic exact sequences by the differential map

0 —— R, (Kxporjsaiper) — R'm,, (CP71(E)) — R'm,, (parEnd’(€)) —=0
Asprer)s(¢*(L))

where £ is the ample generator of the Picard group of the space SU¢,s(r, §) that we denote
by ©. Note that we have the equalities

Kyparjsaper = 10 (Kegs) = ¢ (Kxysue) -
We conclude the proof by applying Proposition 4.3.2, to obtain

Z1d

n

0

Os aear Tspparjg ———0

Rlﬂn* (KXW’"/SMZM >(—> Rlﬂn* < [A%gZ:}zMZ“T (8) (D)] > - Rl'ﬁn* (parEnd(S))

Ospper€ Asmrars(0) Tspper s

~

3=

Hence this conclude the proof. =

4.4 Parabolic Hitchin symbol map

Let & — C x5S ’é‘}g(r @4, 0) be a virtual universal parabolic vector bundle of fixed
parabolic type a, over (C,D)/S a smooth family of projective marked curves over S. We
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want a parabolic version of the Hitchin symbol map given in [BBMP23] in section 4.3.

We suppose throughout this section that there is no trivial parabolic points (see section
1.1).i.e. For al i € I we suppose ¢; > 1. We will use the following notation

SMels = SMeig(r, ax, 0)

First approach: We take the trace map which we denote by B as follow

g (End’(€) @ mh Ke5(D)) ® 0y (End’(€) @ s K¢y (D)) (¢,9)
B
T oy <K(<?/ZS (2D)) B(¢,) = Trace(¢p o 1)

we take its restriction to the subsheaf SparEnd’(€) = End’(£) so the left hand side is the
cotangent bundle Ty, par /g 80 we get
C

. \Y Vv ®2
B . TSMgaT/S ® TSMZGT/S — 7Tn*7T,:} (KC/S(QD)) .
A simple calculation gives
I'mage(B) < mp, T <K?/2S(D)> .
We denote by B the following restriction
B T pper s @ Tsppar jg = Tny Ty (Ké@/QS(DD

We dualize and by Serre’s duality relative to m, we get

BY : 71';< (Rlﬂ's* (Tc/g (—D))) — TSMP&aT/S@)TSMgar/S_

Definition 4.4.1 (Parabolic Hitchin Symbol map)

The parabolic Hitchin symbol pP*" is the morphism given by applying .,
Ppar * Rlﬂ's* (Tc/s(—D)) I We*SyIIlZ (TSMPM/S> .
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Second approach: Consider the evaluation map of the sheaf: SparEnd’(£)®r;, (K¢s(D)),
composed with the injection map SparEnd’(€) < parEnd®(£), we get

% T, (SparEnd’(€) @ mi Ke/s(D)) — parEnd’(€) @ 7k, (Kcys(D))

We dualize

parEnd’(€)" @}, (Teys(—D)) < w5 (mn, (SparEnd’(€) @ 7%, Keys(D)))”
This morphism gives a map which we denote by ev"

T (Teys(—D)) <, parEnd® (&) ® 7 (7, (SparEnd’(&) @ i (Keys(D))))
By Serre’s duality relatively to 7,

T (Te/s(—D)) <% parEnd’(€) ® 7 (R'm,, (parEnd”(€)))
We apply 7., o R'm,, and by the projection formula, we get
Tey (BT, (V) : R, (Tejs (D)) — ey (Taprar @ Tppoar)

Finally we get the morphism:

Tex (Rlﬂn* (6UV)) : Rlﬂ-s* (Tc/s(—D)) —> T, Sym? (TSMpar/S)

Lemma 4.4.2 This application coincide with the parabolic Hitchin symbol pyqey.i.e.
Ppar i=Tey (R, (evY)) : R'7,, (Te (—D)) —> 7, Sym® (Thgper) -
Proof. The lemma follows from commutativity of the diagram

R'm,, (parEnd’(£)) ® R'T,, (parEnd’(€))

/

Rlﬂ'n*ﬂ':} (Tc/s(—D)) Id@(Rlﬂn*TT‘_l)v

m

TMpa'r/S ® TMpar/S
This follows if we in turns dualize, apply Serre duality, for which

(R'mp, (evY)) " = T, (ev ®1d),
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Proposition 4.4.3 The symbol map pper s invariant under Hecke modifications.

The proposition is a consequence of the following: Take F, a parabolic vector bundle over
a curve C of parabolic type a, with respect to a divisor D. Let g € parEnd(E) be a
parabolic endomorphism. Then

Lemma 4.4.4 The trace is invariant under Hecke modifications.i.e.
tr(Hl(g)) = tr(g) for allie I and j € {1,2,....4;}.

Proof. For i e I and j € {1,2,...,{;} take the Hecke modification of £ with respect to the
subspace F/*!(E) so we get a sub sheaf

fiHIE) > E
which is an isomorphism over C\{x;}, thus

tr(Hl(g)) = tr(g) over C\{z;}.

The vector bundle HJ(E) inherits a parabolic structure, see Section 2.4, and H!(g) is a
parabolic endomorphism with respect to this parabolic structure.

E g E

i ls
H(E : H(E

{(E) o) 1(E)

Now we describe the map HJ(g)., : HJ(E)., — H!(F),,. We have the decomposition of
the map ¢ with respect to the quotient exact sequence

0 F/*Y(E) E,, Q/(E) := By, /F] () 0
e | !
0 F/*Y(E) E,, Q(E) = E.,/F]"\(E) 0

thus we have

9lpitigy _
gxz‘ = < FZJO (&) §> e tr(gml) = t')ﬂ(g‘Ffrl(E)) —l—t?“(g).

the Heck modification #/(E) fit in the same diagram

0 QI (E) M (E) F/*\(E) 0
lg l”ﬂi (9)x; lglFij“(E)
0 QI (E) H(E)., F/*N(E) 0
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hence we get

‘ g 0 j _
W= (1 g0 ) = 0 g)a) = 1r(5) + trlalggo o) = ()
I p7+Y(B) ;
There for one has globally the equality
tr(g) = tr(#](9)) € Oc.

This ends the proof. =

Proposition 4.4.5 The parabolic Hitchin symbol map ppa, s an isomorphism.

Proof. Take the relative cotangent bundle over SMg
¢ Ty s — SMejs
one gets the following isomorphism

(e © @) Oy ey = D e, Sym” <T5Mg7;/s>

c/S QZO

and take the G,,-action over the moduli space of the parabolic Higgs bundles Higgs® ()
that contain the cotangent space T, jpar /g as a big open space. Thus elements of
c/s

Te, Oym? (Ts MEST) 5) can be seen as regular functions over T, jpar /s of degree 2 with respect

to the action of G,, that can be extend by Hartog’s theorem to all the space Higgs® (a).
As the parabolic Hitchin system is equivariant, they are obtained from the quadratic part
of the parabolic Hitchin base given by the space

T K& (D) = R'mg, (Teys (—D))

4.5 Kodaira-Spencer map

4.5.1 Infinitesimal deformations

We study the infinitesimal deformations of a triple E := (C, D, E,) given by a smooth
marked projective curve C' of genus g > 2 and D a reduced divisor of degree N equipped
with a quasi-parabolic rank-r vector bundle FE, of fixed quasi-parabolic type m. We follow
[Wel83] to prove the following theorem. See also [Mar(09].

Theorem 4.5.1 The infinitesimal deformations of E are parameterized by H' (C, A% (E)).
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Proof. Let U = {U,}, be an affine cover of the curve C' such that any open affine set
contains at most one point of the divisor D, we set U , = Spec(Ax,).

1. First we recall the infinitesimal deformations of a marked curve (C,D): As the in-
finitesimal deformations of an affine scheme are trivial, the infinitesimal deformation
C. of the curve C' is locally trivial and globally given by the transition maps

0, N
Oxu : Unp x Spec (Cle]) = C |y, ,—— Ux, x Spec (Cle])

which is equivalent to an isomorphism of rings

9,\# . A)Hu[a?] —> ANH[E]
a+eb — a+e(Wula)+0d).

where A, ,[e] == Ay, ® Cle] = Ay, + cAy,, and 9y, : Ay, — A,, are C-
derivations, hence {1,,} is a l-cocycle with values in T, The latter gives the
Kodaira-Spencer class of the deformation C. in H'(C,T¢). Let denote (Ct, D.) an
infinitesimal deformation of the couple (C, D). On an open set U, , a point z € D is
given by a maximal ideal I, < A, ,, hence the 1-cocycle {1, ,} must preserve the
ideal I, ,[e] which means ¥, ,(I,) < I,,. Hence a derivation over I, ,. Therefore
the 1-cocycle {¢, ,} has values in T¢(—D) and gives the Kodaira-Spencer class of the
deformation (C., D.) in H(C,Tc(—D)).

2. Now, let us study the infinitesimal deformation of the triple (C, D, E'), without the
quasi-parabolic structure: we choose the affine covering such that we have F ’Uw =
OC@:M’ so over the affine open subset U, , the vector bundle E' is given by an A, ,-
module M A Let (Cr, De, E.) be an infinitesimal deformation of the triple, where
the deformation (C;, D,) is given by the cocycle {0, ,} with values in T(—D) and
the vector bundle E. in given by the gluing isomorphisms that induce the identity
over My ,

T 0 Maulel — M ule]
m+en — m+e (& (m)+n).
which is an A, ,[e]-linear map via the isomorphism 6, ,. This is equivalent to the
following equality for all a € A, , and m € M, ,

Eulam) —a & u(m) = Jy (@) m,

this can be written for all a € A, ,, as follows
(x> @] = Uxpu(a)ldar, -
Hence {£, ,,} yields a 1-cocycle with values in the sheaf m) given by the pull-back
0 —— End(E) — Ac(E) T, 0 (4.5.1)

L]

0——End(E) —— Ac(E) —— Te(—D) ——0
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3. Finally, we study the infinitesimal deformations of E: Let(C:, D., E.) be such a
deformation of E, where the deformation (C., D,) is given by the l-cocycle {1, ,}
and the vector bundle E. is given by the 1-cocycle {{, ,}. By definition, a parabolic
bundle is given for all ¢ € I by the Hecke filtration (see Proposition 1.3.2)

HYE)cH Y E)c - c HX(E) c HYE) c H)(E) = E. (4.5.2)

Hence the parabolic vector bundle F,, is given also for all ¢+ € I by filtrations of
locally free sheaves

’Hfz(Eg) c Hfi_l(EE) c---cHIE.) cH/(E.)cH)E.) = E.,

and the 1-cocycle {),} must preserve this filtrations, locally the sheaf HI(E) is
identified with a Ay ,[e]-submodule denoted by My’ [e] = M} ,[e] = My ,[e],

X

M ule] — M, ,[e]
| |
My le] My le]

The fact that the diagram commutes is equivalent to the fact that the 1-cocycle {& .}
preserve the filtration given by the Ay ,-modules {M}7 } associated to the filtration

4.5.2). Hence the 1-cocycle {£, ,} has values in the sheaf A/”;T\E defined as the
o c

subsheaf of A¢(E) given locally by differential operators preserving the subsheaves
H!(E). Hence the infinitesimal deformations of E = (C, D, E,) are given by the

—_—

cohomology group H'(C, A% (E)). Note that the sheaf A%"(E) can be included in
an exact sequence

0 —— parEnd(E) — A% (E) — Te(~ D)

where the map V; is the restriction of the natural map : A¢(F) — To(—D) given in
the exact sequence (4.5.1).

To conclude the proof we need to show the following isomorphism A?(\E) =~ AV (E).
Note that by definition of A7 (E) as push-out we have

AL (E) :={(f,0)/ f € parEnd(E) 0 € Ac(E)(—D) and (f,0) ~ (0, f) if f € End(E)(—D)}.
Thus we can define an O¢-linear map p as follows

0 : ANT(E) — AW(E)
(f,(?) — [+ 0.

Clearly the map o induces identity map on parEnd(E). Let us prove that p is an isomor-
phism:
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1. Injectivity: Let (f,0) € AZ"(E) such that o(f,0) =0« f+0=0< d= —f, hence
0, f € End(E)(—D) by definition of A" (E), we have (f,0) = (f,—f) ~ (f = f,0) =
0e A" (E).

L —

2. Surjectivity: Let d € AR (E) we associate its symbol V1(0) € Te(—D). Take a lifting
V1(0) € AX"(E) (modulo parEnd(E)), which can be written V1 (d) = (f, ), where
0 € Ac(E)(—D) with V1(0) = V1(0) and f any element in parEnd(E) . Note that

0,0 € Ac(E)(=D) = 0— 0e parEnd(F). For f =0 — 0, one has q(0— 2, /(5) = 0.
Hence we get an isomorphism of exact sequences

0 — parEnd(E) — AY" (E) —Te(—D) —0

Id Ql;

0 — parEnd(E) — A% (E) —T¢(—D) —0

Id

This concludes the proof. =

Remark 4.5.2 Note that | BDHP22] studied the infinitesimal deformations of E = (C, D, E,)
a marked curve equipped with a quasi-parabolic vector bundle of type m. Where they defined
At(E,) a parabolic Atiyah algebroid as following: Let

DV (E,E) « DY (B),

par

be the coherent sheaf of all differentiable operators oy : FEly — El|y, where U < C is

any open subset, satisfying the condition that for any section s € F(UH;(E)) of a Hecke

modification of E, we get 0y(s) € T(UM}(E)). Now, we define the sheaf At(E.) by
AUE,) = {0e DO(E,E) | V(@) e Te(~D)},

where V1 : DL(E) — T is the first symbol map. And they prove the following result

Theorem 4.5.3 (Lemma 3.1 [BDHP22])
The infinitesimal deformations of B are parameterized by H (C, At(FE,)).

For the proof they use Seshadri’s identification (see introduction Theorem 0.0.5) hence
form: X — C a Galois covering with Galois group T, they identify

1. Infinitesimal deformations of (C, D, E,), and

2. Infinitesimal deformations of (X, F := 7*(FE)) equipped with the natural I'-linearisation.
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The second point is given by HY(X, Atx(F))" the T-invariant part of the cohomology
group HY(X, Atx (F)), that parametrises the infinitesimal deformations of the couple (Y, F),
where Atx(F) is the Atiyah algebroid of the vector bundle F' over X. They conclude the
proof by the following remark: the sheaf At(FE,) is the vector bundle underlying the parabolic
bundle corresponding the T'-equivariant bundle Atx (F) over X. i.e. At(E,) = 7k (Atx(F)).
Hence we get

Toet(x,Fr) = Toets = H' (X, Atx(F))" = H'(C, 7l (Atx(F)) = H'(C, At(E,)).

where Tpet(x,Fr) 95 the space of infinitesimal deformations of (Y,F,T") a curve and a I'-
linearised bundle F on X. Note that the last isomorphism depends on the chosen Galois
cover. This concludes the proof. Note that the sheaf At(E,) given in [BDHP22] is by

definition the sheaf AL (E) given in the proof of theorem 4.5.1, hence isomorphic to the
parabolic Atiyah algebroid A" (E).

4.5.2 Parabolic Kodaira-Spencer map

Let 75 : (C,D) — S be a smooth family of projective marked curves parametrized by
an algebraic variety S and let 7, : SMZ%(T, ay,0) — S the relative moduli spaces of
parabolic rank-r vector bundles of fixed parabolic type a, and determinant ¢ € Pic?(C/9).
Let &, be a virtual universal parabolic vector bundle over X?*" := C xg SME" (r, a, 0).
We shall denote the fiber product by the diagram

Xpi, n SMeis(r, o, 6)

(C,D) S

~_

05

We use the following notation SMZ*" := S ’é’;;(r, @4, 0). We have two fundamental maps

e The Kodaira-Spencer of the family of marked curves:
keys : Ts — R'm,, (TC/S(—D)) ,
given as the first connecting morphism on cohomology of the short exact sequence
0 — Teis(=D) — T — ;T — S.
where the sheaf 7 is given as follow:
T :={veTe|v(p) clp)}cl;

where Ip is the ideal sheaf of the divisor D.
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e The Kodaira-Spencer of the family 7, : SMZ" — S:
Rsmperss - Ts —> Rime, (Tspars)

where
TSM””/S = Rlﬂ'n* (parEndO (8))

given as the first connecting morphism on cohomology of the short exact sequence

0— TSMZM/S I TSMZ?; I W:TS — S.

Take the QPA sequence of the bundle &, over AP*"

0 — parEnd’(€) —— A" Jsaapar (E) —= 3, (Tejs (D)) —=0

As 7, (7% (Ic (=D))) = 0 and R?m,, (parEnd’(£)) = 0 (the relative dimension of m, is

1), we apply R'm,, we get an exact sequence on S./\/lgc/bg(r, Uy, 0)

00— TSMIC"”/S - Rlﬂ'n* <A$ZZ:/3M2‘” (5)) - Rlﬂ-n* (ﬂ—; (TC/S (_D))) —0

Proposition 4.5.4 The first connecting homomorphism with respect to m., denoted ®P*"
commutes with the Kodaira-Spencer maps of the two families

Ppar © Ke/s = Ksaper)s-
We call the map ®P*" the Kodaira-Spencer map.

Let @ is the first connecting homomorphism of the long exact sequence for 7. of the
sequence

0 —_— OSMZGTQ Rlﬂ-n* ([A(‘;QZ:}S;M?LT (5) (D)] > —_— TSMgar/S —_— O

given by applying R'm,, to the dual of the SQPA sequence tensorized by O,yar (D)

0—Q!
X

e AN s e (€) (D) — parEnd’(€) —0

par/SMgar
We prove a parabolic version of proposition 4.7.1 in [BBMP23]

Proposition 4.5.5 The following diagram commute

_(I)par
Ppar

T

ey Sym? (TSMg” /S>

i.€.; Ppor + 00 ppar = 0.
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Proof. We need the following lemma

Lemma 4.5.6 ([BBMP23| lemma 4.5.1 page 23. ) Let X a scheme, V and L respec-
tively a vector and a line bundle on X. Moreover let F € Ext' (L,V)

0—=V o p "o -0

by taking the dual and tensorizing with V & L, we get
0—V —>FVRL—>VQVKRL—0

consider the injection
v o L — V*QVQ®L
t — Idy ®t

then there exist a canonical injection ¢ : F' — F*QV ® L such that the following diagram

commutes
—T

0

0—>V E L
|k K
00—V RVRL—= V'@V ®L—>0

Now, we prove the proposition. Take the parabolic Atiyah sequence on XP*" of the universal
bundle £ relative to m,. We note : AP*" := A%Z: Jpwar (€) and AST = A%’;ﬁ:’/‘gﬁpw (&), and
take the evaluation map composed with the inclusion SparEnd(€) < parEnd(€)

7% T, (SparEnd’(£) @ 75 Kejs (D)) — parEnd’(€) @ 7l Keys (D)
We dualize
parEnd’(€)Y @ 7% Te/s (—D) LN 7% Moy (SparEnd’(€) @ mi Keys (D))

We get the following morphism of exact sequences

0 0

parEnd’(&) parEnd’(&)

\4

parEndO(E) R AP ® i Te/s (—D) parEndO(é’) ® T, (AS” ® 1k Keys (D))

\

parEnd’(£) ® parEnd’ (€)Y ® 7} T¢)s (—D) —¥parEnd’(&) @ 7* 7, (SparEnd’(€) @ m Keys (D))
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The map ¢ is given by taking the dual of the evaluation map
ev : 7T:L7Tn* (Apar ® W;Kc/s (D)) —_—> Apar ® F;Kc/s (D)

and composite with the natural inclusion A" < AP We apply the lemma 4.5.6 to the
left exact sequence ( for V = parEnd’(£), L = ¥ T¢)s(—D) and F = AP"), and we apply
the Serre duality relative to m, for the right exact sequence we get the morphism of exact
sequences

0 0
parEnd’(€) parEnd’ (&)
Arer parEnd’(€) ® n* Rlm,, (A*"(D)Y)
7% Teys(—D) parEnd’(£) ® 7 R'7,, (parEnd”(€))
0 0

The left exact sequence is the parabolic Atiyah sequence where we multiply the map
AP — ¥ (Tess (—D)) by —1, see Lemma 4.5.6 .

We apply R'm,, to get
0 0

Tspperys Tspper s

Rl T (Apar)

Tspper s @ Ry, (A% (D))

Tspmperss @ Tspperss

0 0

The right exact sequence is the R'm,, applied to the dual of strongly parabolic Atiyah
sequence tensorized by Tsaerers, and the first connecting homomorphism in cohomology
with respect to m,. is given by cup product with the class A.
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We take the first connecting homomorphism of the long exact sequence with respect to
the map 7., we get

Ty 70, (3, (Tys (D)) ey (TSMZ“T/S ® TSMQ“’“/S)

Rlﬂ-e* (TSMZCLT/S> Rlﬂ-e* (TSMgaT/S>

we have

7T6*R17Tn* (71':; (TC/S (—D))) =~ Rlﬂ's* (TC/S (—D))

we get the following commutative diagram

Ppar
R'ms, (TC/S (=D )) T T, (TSMZ‘"/S ® TSM{;M/S>
_rar o 5
Thus conclude the proof. ]

4.5.3 Some equalities and consequences

We recall the equalities given in Theorem 4.3.4. For all i € [ and j € {1,2,...,¢;} one has

1. LA = [©] e H° (S, Rlﬂe*mémwr/s)) We denote the associated application given
by the contraction with this class by

0= UA : ., (Sym? (Tspwarys)) — R'me, (Tspwarss)

2. (i) = [6;()] € H? <S, lee*(Q}SMw/S)). We denote the associated applica-
tion given by the contraction with this class, as follows

@(2) = UA](Z) . 7Te* (Sym2 (TMpa'r/S)) — Rl’ﬂ'e* (TMpar/S) .
Combining the above equalities, we get the following result.
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Theorem 4.5.7 Assume that the family m, : (C,D) — S is versal . Then for all i € I
and j € {1,2,...,4;} we have the equalities over the moduli space S/\/l?;g(r, 4, 0)

1. U[B] 0 ppar = = - Ppay.
2. 010,(1)] © pyar = — 25 Bpar

Proof. The first equality is a direct consequence of Proposition 4.5.5, where we have
0o Ppar = _(I)pam
we multiply the equality by - and use the first equality above
r r
—do ar:U@ o ar:__q) ar+
o Pp [©] © pp o P

Fixie I and j € {1,2,...,¢;}. We take the Hecke isomorphism over S

>~

M SME(r, ., 6)

\O

S

SMETs (r,Hi (), H1(6))

where the map 7—[{ is given in (4.3.1). Then by Proposition 4.5.4 applied over SMP" :=
SMgs(r, o, 6) and SMYT = SMgjg (r, 1] (cs), Hi(6)), the following diagram commute
under the assumption that the map r¢/s is an isomorphism

Kre

R'me, (Tspawerys)

y
Ke/s

= R'm, (Teys(=D)) P

4,7
k

.y
R mg) <T3M§jr/s)

In fact by Proposition 4.5.4 applied over SMP*" and SM?’", one has

VA

N
(I)par O Re/s = R,

i o
(I)par ©kKejs = ki

= M oD, = BV (4.5.3)

par:*

J o
H; 0 Kn, = K i

Kess  isomorphism

J

2The Kodaira-Spencer of the family of marked curves is an isomorphism
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Now we define the parabolic Hitchin symbol map p4J, over the moduli space SMYT" (see
definition 4.4.1). We have the following commutative diagram

/’

Rz, (Teys(—D)) O ~| i O

\i,j

anr 2
v Tey (Sym TSijT/S)

v[9;(9)]

Tes (Sym®Tsppar /) R'7e, (Tspperss)

e

1 17-] ar
oo el (o)

The first diagram commute by Proposition 4.4.3. Hence by the above diagram one has

A0 @ prar = ()™ 0 [O3(0)] 0 7)) © pyar
= ()™ o (ulB5()] i)

We apply Proposition 4.5.5, to get

1301y = () o (it ).

J

and by equation (4.5.3)
r

n;(0)

This concludes the proof. =

V[©;(D)] © ppar = == Ppar.

4.6 Line bundles over SM/(r, ., 9)

4.6.1 Parabolic determinant bundle

Let &, be a family of parabolic rank r vector bundles of fixed parabolic type a, over a
smooth family of curves C/S parametrized by a S-variety 7. Let p: C xg T — T the
projection map. We recall the definition of the parabolic determinant line bundle under
the hypothesis (1.6)

which is a line bundle over T, where

o & = &|yxqr, for some section o : S — C.
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M=

° Xpm,zd—i—?“(l—g)-i-

L
3% i) 0)-

i=1

Pauly in [Pau96] gives another definition as following

Definition 4.6.1 (Parabolic determinant bundle) Let &, be a family of parabolic rank-
r vector bundles of parabolic type o, over a smooth family of curves ms : C — S parame-
terized by a S-variety T, then we have

N ¢;—1

Opar (&) = MEF O R X {det (&, /ﬂj“(e))pﬂ“’} ® det(&,)°

i=1 j=1

where the determinant is with respect to the projection C xsT — T and for alli € I and
jef{l,2,...0;— 1}

o &, 1= g|ai(S)><sT7 where o; : S —> C the parabolic section of 7.
o p;(i) = aj1(i) — a;(i).

q .
o 7;(i) := 3 mi(q) = dime(&,,/F/T(E)).

i=1

N -1
o re=kxy— >, > pi(i)r;(i), where x =d+r(1—g).

i=1j=1

We prove in the following Proposition that the two definition are the same.

Proposition 4.6.2 Let &, be a family of parabolic rank-r vector bundles of parabolic type
oy over a smooth family of curves w, : C —> S parameterized by a S-variety T, then

Opar (Ex) = Npar (Ex)-

Proof. To prove the equality of the line bundles over 7, we begin by replacing det (Ff (E)/FIT(& )
by det (Sxi/FfH(é')). In fact we have for all i € I and j € {1,2,...,¢;} the equality

det (FI(€)/FI1(E)) = (det (£,,/F/(€))) @det (£, /FI*(E)). (4.6.1)

for the proof, we take for all i € I and j € {1,2,...,¢;}, the quotient exact sequences

0—— F/ (&) &, Q&) =&, /F/(£) —=0,

00— F/ (€)= E&, —=QI(€) 1= &, /F (&) —=0,
We calculate the determinants line bundles
det F/(€) = det(&,,) ® (det Q7))
det F/M(E) = det(&,,) ® (det Q1(E)) .
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Now we calculate the determinant using the above equalities

-1

det (F7(£)/FIT(€)) = det F)(€) ® (det F/T(£))
= det(&,,) ® (det Q7€) ' ® (det(c‘,’m) ® (det Q{(S))l>_1
= (detQI'(€)) " ®det QI(€)
= (det (&,/F/(€))) " @det (&,/F/7(€)).
Now we can proof the proposition

N ¢

Apar (Ex) k®®® {det( (&)/FIT (& ))}—aj(i) ®det(5a)§><w
k®é\£> 51 {det (8 /F] ))_1®det (gcri/FijJrl(g))}_aj(i)®det(50)]:XPM

1=1 j5=1

By rearranging the terms, we get

ST {det 0 @ Q) det (€,/F74(0) jm} ® det (&)

7=1

As det(&,) is independent of the section o, we get

;-1

N . (i éXpaT* Z a z(l))
)‘Par(g*) = )\(g)k X® ® @ det (Soi/FiJ“(g))p]( ) ® det(&,)< =
i=1 j=1
Now we observe the following equality:

GORORTDICAC) (4.6.2)

So the exponent

N 4 N

Xpar Z Ay é (X + % Z Z aj(i)mj @) - Z Qy, (Z)
N ¢ N

= S+ (Z a5y ) - rzaw))

By (4.6.2) we get
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which is equivalent to the equality:

N
EXpar — rz ag, (i) = re.

=1

This concludes the proof. =

We give another description of the parabolic determinant line bundle.

Proposition 4.6.3 (Parabolic determinant bundle and Hecke modifications)

Let &, be a family of parabolic rank-r vector bundles and determinant 6 € Pic(C/S) of
parabolic type a, over a smooth family of curves ws : C —> S parameterized by a S-variety

T. Then

;—1

N
Mar (62 = 07 @ R) R 0, (1) (4.6.3)

1=1 j5=1

where, for allie I and j € {1,2,....0; — 1}

e O is the pull-back of the ample generator of Pic(SUc/s(r,0)/S) by the classifying map
o1 and n = ged(r, d).

e O;; is the pull-back of the ample generators of Pic(SUcs(r,0;(i))/S) by the classify-
ing maps ¢ZT] and n;(1) = ged(r,d;(i)), where d;(i) = deg(0,(4)).

o p;i(i) = aj1(i) —a;(i) and  q;(i) = n;(@)p;(i).
N fi-1
ca=n(k-3 3 p))
i=1 j=1
Proof. By the Proposition 4.6.1, we prove the equality

N ¢;—1

Opar (€ @a®®®@

=1 j=

we have by definition

£;—1

Opur(E2) = MEF © Q@ {det (€./F())"} @ det(& )

i=1j

I
—

Take the Hecke exact sequences

0—=H}(E)—E —=Q]() = &,/F/ " (£) —0,
By Lemma 1.4.5, we get
—1

ME) = AH](€)) ® (det (£, /FT(€)))
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We rearrange the terms and by the above equality and take the r-th power

N fi—1 . .
Opar (£.) = ME™ @R R {N (H(£)) @ ME) ™V @ det(E,)
i=1 j=1
N £—1 T N ¢;—1 0
=MEFRRANE) ™D @R RN (HI(E) T ®@det(E,)
=1 j=1 i=1 j=1
- Kya N ¢;—1 _r_ %) n;(3)p; (1)
— (M) @det(E)M @R {A(?—[” (£)T @ det(&,) } ® det (&, )
i=1 j=1
where
( N f-1 N -1
a=n|k=23 > pii)]| and re=kx— > > p;(i)r;Qi)
i=1j=1 i=1 j=1
(%) { x=d+r(l—g) and n X =yx for n=ged(r,d)

X;(i) = dj(i) +r(L—g)  and n;(i) ®;(i) = x; (i) for n;(i) = ged(r, d;(7))

Thus

i=1 j=1 i=1 j=1 i=1 j=1
N ¢;—1
=1 0@ (=750 + x = x;(9))
i=1 j=1
N ¢;—1
= > 2, (@) | =10 + d — dj (i)
=1 j=1
75 (%)
q=20

N £i—1 ‘
Hence for g;(i) = n;(i)p;(i) one has: ©,,.(£)" = 0@ ® X) O;(i)4®.

i=1 j=1
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Remark 4.6.4 We apply this proposition for T = S./\/lgc/bg(r, ay,0) and &, a virtual uni-
versal parabolic bundle, we get

n| k— ; > N ‘ A
@;ar = @par(g*)r =0 < =151 X ® @j (i)”j(Z)Pj(l)

4.6.2 Canonical bundle

In this section we calculate the canonical bundle of the relative moduli space of semi-stable
parabolic bundles for a fixed parabolic type SME" := SMIC)%(T, a4, 0)/S over a smooth
family of marked projective curves parameterized by a scheme S.

Canonical bundle in the Grassmannian case

We suppose that the divisor is of degree one and the flag type is of length one. Let &, be
a virtual universal parabolic vector bundle

xror T SMEY " SUeys(r, 0)
T e Pe
(C,D) —— S

oF)

where D = ¢(S). In this case the map ¢ is a Grassmannian bundle over the stable locus
of SU¢/g (the relative moduli space of semi-stable rank-r vector bundles of determinant §)
and we set D := 7} (D) = D xg SMZ". Then we have the Hecke exact sequence

0—H(E)—>E—QE)=E|p/F(E) — 0 (4.6.4)
and the natural exact sequence supported over D
0— F(&)—>Ep—Q(E)—0 (4.6.5)
The relative tangent bundle of the fibration ¢ is given as follow
T, = Hom (F(£),Q(£))) = F(£) 7 ®@Q(€)
So the relative canonical bundle is
Ky =det(T; ") = det (F(£)) @ Q(E)™)
We put 7’ := rank(Q(€)) = r — rank(F(€)), we get
Ky = det(T,) ™ = det(F(E))" ®@det(Q(&£))~r—"
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The short exact sequence (4.6.5)
det(Ep) = det(F(€)) ® det(Q(E))

which is equivalent to
det F(£) = det(Ep) ® det(Q(E))

We replace in the previous equation
Ky = det(Ep)” @ det(Q(E))™

so Lemma 1.4.5 applied to the Hecke modification sequence (4.6.4) gives the equality
AE) = AMH(E)) @ det(Q(E)) ™

which implies that
Ky =det(Ep)” QAH(E)) " @AE)"

Ky = [A01(€)7 @ det(sy)ii:]_n/ ® [A(©)F x det(eD)%]" ® det(Ep)” XY
where: n = ged(r,deg(€)), n' = ged(r,deg(Gp(E)), x = x(€) and x’ = x(Gp(E)).
X' = x = deg(Gp(€)) —deg(&) = —r' —= 1" = x + X' =0
If we denote ©p the pull-back of the ample generator of Pic(SUc(r,d")/S), we get:

w¢/ = @n ® @Bn/

Ksmrer = Ksug(ro /s @ Ky = 07" ® (@n ® @1_771,) '

c/s

Hence
KSMQGT/S - @—n ® @l—)n . (466)

General case: Now we can calculate the relative canonical bundle Kg MEST /5 of the mod-
par

uli space & C/S(r, a4, 0) of parabolic bundles.

Proposition 4.6.5 Letb= —n <2 + deg(D) — ] E,;) . Then the canonical bundle is given

=1

~

by the formula:

N

N (4;—1
i—1

7

Jj=

Kspper)s = e’ ® < @j(i)_”ﬂ'(i)) .

Proof. Let ¢ : SMZ" — SUc(r,d) be the forgetful map and denote its relative canonical
bundle by K, then we have KSMQ‘"/S = Ksue(rs)/s ® Ky and by Drezet-Narasimhan 1.4.3
we get Kgpypar)g = O~ ® K,, where © is the pull-back of the relative ample generator of
Pic(SUc(r,0)/S) by ¢ and n = ged(r, deg(d)). Now, as the map ¢ is generically a product
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N
of a flag varieties we can decompose the relative canonical bundle Ky = ) K ;), where for
i=1
all 7 € I the bundle K ;) is the canonical bundle of a flag variety. Hence as the flag variety

is embedded canonically in a product of Grassmanians and that its canonical bundle is

given by the product of the canonical bundle over the Grassmanians, then by the equality

(4.6.6), we have
4

Ky = (@"®@ (1))

7j=1

We replace and rearrange the terms, to get

N
Kspperss = Ksucrays ® Ky = 07" ® @ Ko
N -1

~0 @ ® (0" ®6,() )

=1 j=1

—n| 2+deg(D)— 24) N £i—1
_o <+g (@@G)] nj(z)

i=1 j=1

This proves the formula. =

Example: Rank 2 Parabolic bundles

Let & = (&, Fi(€)ier) be a relative family of rank-2 parabolic vector bundles and degree-d
of fixed parabolic type

(0 < CL1(’i> < CLQ(Z) < k)ie[
over (C/S, D) parameterized by an S-variety 7 /S, we set

e x=d+2(1—g),n=ged(2,d) and n’ = ged(2,d — 1).

e p(i) = as(i) —ai(i) and 2e = ky — % p(i).

ca=n <k—§:1p(i)>.

Then the parabolic determinant bundle

N
Apar (€) @ E/Fi())P @ det(E,)".
We get the following description in rank 2 case.
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Proposition 4.6.6 With the above hypothesis, we get

N
1. The parabolic determinant bundle is given by: 02, = 0*® &) O(i)"?0).

par
i=1

N
2. The canonical bundle is given by: Kgymaer /s = O "N R e ™.
i=1

4.7 Existence and flatness of the connection
With the same hypothesis.

Theorem 4.7.1 Take the parabolic symbol map pper, then the parabolic determinant line
bundle Oy, satisfies the van Geemen-de Jong equation. i.e.

/’L@par © ppm" = _(k + r>®paT

Proof. By Proposition 3.3.1 we have that

1
o = O] = 0 (5lKsnes])

Thus the Theorem is equivalent to the following points

1. We prove the equality: U[Opar] © ppar = —k PP*", so called the metaplectic case (or
correction)

By Proposition 4.6.3, Theorem 4.5.7 and linearity with respect to the the tensor
product, we get

N ¢;—1 ‘ ‘
u[@;ar] O Ppar = U [@a ® ® ® @j(i)n]'(l)Pj(z)] © Ppar

i=1 j=1

= a(v[O] o ppar) + Z Z n; (4)p; (i) (V [0;(i)] © ppar)

[
|
VN
| 3
)
_I_
=
o
ol
3
.
=
=
oL
A/
3
=7
~__
N——
s}
g

Thus
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and by the following identity
0 Moo N £i—1 N £i—1
E+Z D pili) = (k—z Z%‘(D) +, D pili) =
i=1 j=1 i=1 j=1 i=1 j=1

we get the equality
o [617&7“] © Ppar = —k CI)par (471)

2. We prove the equality: U[Ksaper/s] © ppar = 21 Ppar

By Proposition 4.6.5, Theorem 4.5.7 and linearity with respect to the the tensor
product, we have

N £;—1
U[KSMZ‘"/S] © Ppar = Y [®b ® ® @ Gj(i)nj(l)] © Ppar

i=1 j=1
N ¢;—1
= —b(u[O] © ppar) +ZZ —n; (i ©;(4)] © ppar)
=1 j=1

Thus
U[KSMgar/S] O Ppar = 21 Ppay

Adding the two equations we get

1
<U[®par] — UE[KSMICQM/S]) O Ppar = —k (I)pm‘ —T q)par = —(k‘ + T)(I)par

thus
10,4, © Ppar = —(k + 1) - Ppap. (4.7.2)

O

We observe that the composition pe,,, © pper does not depend on the parabolic weights
but depends on the level-k, in some sense what contributes in the decomposition (4.6.3) is
the term ©F, we rearrange the terms as follow

£;—1

N 4;—1 N (4)
Opar = 6" Q@ ;)" = 0" Q@ (67 ®6;() )"
i=1 j=1

=1 j=1
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By the Definition 4.6.1 and Propositions 4.6.2, 4.6.3 the identification we get

i 7

é\é ® {det (gai/Fij+1(g)) } ®det (re—kx) — éi) ® (@ ® @ )P]( i) '

which we call the flag part of the determinant line bundle and we denote by F(a,). By
Corollary 4.5.7 for all i € I and j € {1,2, ..., ¢;} we have

(U[O7] + U [8;()]) © ppar = 0

Thus we get
U [F(ax)] © ppar = 0. (4.7.3)

By Proposition 4.4.5 one has
U [F(as)] = 0. (4.7.4)

Remark 4.7.2

1. In general case (see. [Sin21]) : If X is a Hitchin variety and L line bundle over X,
then we have a map

u[L]: HY(X, Sym? Tx) — H'(X, Sym? 'Ty)

which can be seen as the first connecting map in cohomology of the short exact se-
quence

0 — Sym? (DY(L)) — Sym!(DY (L)) — Sym(Tx) — 0

which is the q-th symmetric power of the the Atiyah sequence (3.1.1), and we have
the following theorem

Theorem 4.7.3 ([Sin21], Theorem 2.2)

If L is an ample line bundle then the map above is an isomorphism.

2. The varieties SUc/s(r,6) and SMgg(r, ax, 0) are Hitchin varieties in the sense of
[Sin21], and by Theorem 1.6.3 the parabolic determinant line bundle ©,q, is ample
thus the map

U [Opar] : e, Sym” (TSMZ”/S) — Rlﬂ-e* (TSM?"/S> )
s an isomorphism.
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By equalities (4.7.2) and (4.7.4), one has

n(k+r)

Mepar = f -V [6] kf

and for all positive integer v, one has

g, = M e = () G [y

r

Thus by the previous remark, on has

Proposition 4.7.4 For v a positive integer the map pey, is an isomorphism.

We get the van Geemen and de Jong equation Theorem 4.7.1 for any positive power of the
theta line bundle

M@Zw O Ppar = —(Vk + T)(I)par

Theorem 4.7.5 Let v € N* be a positive integer. Suppose ms : (C, D) — S a smooth
family of complex projective marked curves of genus g = 2 and D a reduced divisor of
relative degree N, take o, = (k,d,m) a fized rank-r parabolic type with respect to the
dwisor D. We denote by 7. : S g’;g(r, (i, 0) —> S the relative moduli space of parabolic
rank-r vector bundles over (C,D)/S with determinant § € Pic?(C/S), equipped with the
parabolic determinant bundle O,,-. Then there exists a unique projective flat connection
on the vector bundle .. (0©},,) of non-abelian parabolic theta functions, induced by a heat
operator with symbol

, 1
Hit -
ppar (V) . (Vk? + T) (ppar © KC/S) :

Proof. Let prove the theorem for v = 1, we denote p/lit := pliit(1).

e First we prove existence of the connection: We apply van Geemen-de Jong Theorem
3.3.2 for L = ©,,, over SMZ" = S./\/l?;g(r, Qx,0). Thus by Theorem 4.7.1 and
Proposition 4.3.3, we get the first condition of Theorem 3.3.2

ILL@pa'r © (ppm" o K’C/S) = _(k + T)QPCLT‘ o ’K"/C/S
= —(k' + T) HSMZGT/S.

The second condition follows by Theorem 4.7.3 for ¢ = 1.i.e.
U [Opar] : e, Tspaper /s — R'r,, Osnmzers

is an isomorphism, as the relative Picard group Pic(SMg*/S) is discrete then the
infinitesimal deformations of any line bundle L over SME"" are trivial and parame-
terized by the sheaf R'7,, Ogpper over S, thus

1 ~
R WG*OSMZQT = 0,
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as consequence, we get that there are no global vector fields

Tes(Tsmrerss) = 0,

The third condition follows from the algebraic Hartogs’s Theorem and the fact that
the space SM?;;(T, (4, 0) is normal variety and proper over S. Hence the smooth
locus is a big open subset of SM?/LQ(T, Qy, 0).

e Flatness of the connection: We apply the flatness criterion Theorem 3.3.3 to the
parabolic symbol map p,q.. The first condition holds since by definition of the
parabolic Hitchin map corresponds to homogeneous functions on Ty M of degree

two under the action of G, in the parabolic Hitchin system, hence Poisson-commute.

The second point is given in Proposition 4.7.4 and the third point is given in the first

part of the proof.

[m}
For D = ¢ and a, = k € N* the trivial parabolic type, we have the identification
SMgg(r,04,6) with SUcys(r,d) the moduli space of semi-stable rank-r vector bundles

with determinant 8, hence Oy = L for n := ged(r, deg(d)) and pyay = p!*™.

We obtain the following special case for non-parabolic vector bundles.

Theorem 4.7.6 Let k a positive integer. Suppose a smooth family ps : C — S of
complex projective curves of genus g = 2 (and g = 3 if r = 2 and deg(d) even), set
n := ged(r, deg(0)). Let L be the ample generator of the Picard group of SUc/s(r,0). Then
there exists a unique projective flat connection on the vector bundle p., (L") of non-abelian
theta functions, induced by a heat operator with symbol

p(k) :

n

~r(k+n) (""" o kigys) -

In fact for k € N*, we have O = LF hence p(k) = pllit(L).
Remark 4.7.7 The van Geemen-de Jong criterion cannot be applied in following cases:

1. Genus zero: not interesting case as we have

{pt} if deg(d) divides r.
Su]pl (7’, 5) =
(%) otherwise.

2. Elliptic curves: we have the following description of the moduli space [ Tu93]
SUC(T, 5) >~ Pm_l,

where m = ged(r, deg(d)), for any line bundle § € Pic(C). Note that the case m = 1
18 not interesting.
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Hence the second condition in Theorem 3.5.2 does not hold, as on the one hand the projec-
tive space admits global holomorphic vector fields H°(P™, Tpm) # 0 by Euler ezact sequence

0 — Opm — OPm(l)m+1 — Ipm —> 0

on the other hand HY(P™ O) = 0 as the Picard group is isomorphic to Z hence no in-
finitesimal deformations.

Some comments We apply Theorem 4.7.6 for § = O¢ thus n = r and 0O,,, = L*, we

get
1
k)= — (pus
p(k) it 7) (Pt © Kieys)

Hence we recover Theorems 4.8.1 and 4.8.2 in [BBMP23], which was generalized in [BMW21a]
and [BMW21b] to the space SMei5(r, o) the space of rank-r parabolic bundle with trivial

determinant and parabolic type a,. The symbol map is given by

oo (V) == |T| pigy © (U[O] © ppar © Kieys) -

for a positive integer v. By 4.7.4 and (4.7.4), we get

[
I (! S
R
hence |
Il){j;ir(lj) = _(V/{ n 7") (ppar © HC/S) = |F|p}l){ﬁ(1/)

The factor |I'| is because they work over SUE(T) the moduli space of I'-linearised bundles

for family of Galois coverings h : C— (C, D) parameterized by the variety S.

Remark 4.7.8 If the system of weights a, is not generic in the sense of Yokogawa then
the moduli space S./\/lg(;g(r, Q, 0) s not smooth, and its Picard group is not mazximal. In
other words, note all line bundles on the Quot scheme descends to the moduli space. In
fact we can choose the weights a, in such a way that we have the following isomorphism:

Pic (SMEL(r, v, 8)/S) = Z6y0,

In this case, we must work over the stack of parabolic vector bundles, where the Picard
group is maximal, and the Hecke maps Hf and the forgetful map are maps between stacks
(no stability conditions). The decompositions of the parabolic determinant line bundle 4.6.3
and the canonical line bundle 4.6.5 still holds.

Example 4.7.9 (Non-generic weights. See [Pau98| for the details) Let’s consider
the rank two case with D being a parabolic divisor of degree N = 2m > 4. For all v € I, we
choose the following system of weights:

ai1(i) =0, as(i) =1 and k = 2.

par

In this case the Picard group of the moduli space SMC/S(Q,Q*,OC) 1s generated by the
parabolic determinant line bundle ©,,,.
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Chapter A

Deformation functors

In this appendix we recall definitions of deformation theory over Artin C-algebras and their
properties. We give some examples of geometric deformations. We follow [Mar(09].

A.1 Formal deformation theory

Definition A.1.1 (Deformation over Artin rings) A functor of Artin rings is a co-
variant functor F : Artc — Set from the category of local Artin C-algebras with residue
field C to the category of sets, such that F(C)= {fized one point set}.

Definition A.1.2 (Tangent space) Let F a functor of Artin ring. The tangent space to
F is the set Tr := F(C|e]), where C|e]| := C[z] /(x?), the dual number C-algebra.

We want to have some control over such functors, so we define a special class of functors.
Let F a functor of Artin ring. Let B — A and C' — A be morphisms of Artin algebras
and let

Cf(B XAC) —>f(B) X]:(A)f(C)

be the induced morphism. The Schlessinger conditions are the following:
A) If C —> A is surjective, then ( is surjective,
B) If C = Cle] and A = C, then ( is bijective,
C) dimcF(C [¢]) is finite,
D) If B=C — A is surjective, then ( is bijective.

Definition A.1.3 Let F be a functor of Artin rings. F is a functor with good theory of
deformation if conditions (A) and (B) holds. F is homogeneous, if ¢ is bijective, whenever
C — A is surjective.
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A.2. EXAMPLES OF DEFORMATION FUNCTORS

Proposition A.1.4 Let F be a functor of Artin rings. The set Tx has the structure of
a C-vector space. Let v : F — G be a morphism of functors of Artin rings. Then the
induced map v : Tr — Tg is a C-linear map.

A.2 Examples of deformation functors

A.2.1 Deformation of schemes

Definition A.2.1 Let X be an algebraic C-scheme. An infinitesimal deformation of X
over A € Arte is a Cartesian diagram of morphisms of schemes

|
Spec(C)—— SpeiT(rA)

where 7 s flat.

An isomorphism of infinitesimal deformations X4 and X'y of X over A, is an isomorphism
v: Xy —> X that makes the following diagram commutative

XA/)”(\XA

Spec(A)

Definition A.2.2 (Locally trivial deformations) Let X be an algebraic C-scheme. An
infinitesimal deformation X4 of X over A is locally trivial, if every x € X has a neigh-
bourhood U, — X, such that

Tx XA‘UI
Spec(C)————— Spec(A)

s a trivial deformation of U,.

We define isomorphism of locally trivial deformation as tsomorphism of deformations.
Proposition A.2.3 Let X an affine scheme, then we have

1. FEvery infinitesimal deformation of X is affine.
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APPENDIX A. DEFORMATION FUNCTORS

2. If X is smooth, then it is rigid, i.e. all its infinitesimal deformations are trivial.

Definition A.2.4 (Functor of deformation of schemes) Let X be an algebraic scheme.
We define the functor of infinitesimal deformations of X :

Defx : Artc — Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformations of X over A.

The functor of locally trivial infinitesimal deformations of X :
Def’y : Artc —> Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
locally trivial infinitesimal deformations of X over A.

Remark A.2.5 By Proposition A.2.3 if X is a non singular scheme, all its infinitesimal
deformations are locally trivial. Thus Defx =~ Def'.

Now we recall without proof, the most important results and properties of the functors
Defx and Def’y.

Theorem A.2.6 The functors Defx and Def’y are with a good deformation theory, and
we have the following

i %ef’x = H' (X, Tx) and Toety = Ext'(X, Tx).
e If X is smooth, Defx = Def'y and we have Toery = Tpep, = H'(X, Tx).
e The obstruction space of the functor Defy is the space H*(X, Tx).

o If X is smooth, then Defx =~ Def’y and the obstruction space is H*(X, Tx).

A.2.2 Deformation of sheaves

Definition A.2.7 Let X be an algebraic scheme over C. Let £ a locally free sheaf over X.
An infinitesimal deformation of £ over A € Artc is a locally free sheaf of Ox ® A-module
Ea over X x Spec(A) with a morphism of sheaves wa : E4 —> &, such that my : E4 @ CE
s an isomorphism.

Definition A.2.8 Two infinitesimal deformation of £ on X, E4 and &'y are isomorphic,
if there exist an isomorphism of sheaves ¢ : €4 —> &, that commutes with the maps
Ta:€x—Eand 'y : &y — &, i.e. Tyop =Ty

Definition A.2.9 Let £ a locally free over the scheme X. We define the Artin functor
of infinitesimal deformations of £: Defe : Artc — Set. Which associates to every local
Artinian C-algebra A, the set of isomorphism classes of infinitesimal deformation of € over

A.
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A.2. EXAMPLES OF DEFORMATION FUNCTORS

Theorem A.2.10 The functor Defe is a functor with good deformation theory.

Theorem A.2.11 The tangent space to the functor Defg is given by Tper, =~ H' (X, End(£))
and H*(X,End(£)) is the obstruction space.

A.2.3 Deformation of a pair (scheme, sheaf)

Definition A.2.12 Let X a scheme over C and £ a locally free sheaf. An infinitesimal
deformation of the pair (X, &) over A € Artc is the following

o A deformation X4 of the scheme X over A, i.e.

|
Spec(C)—— SpeiT(rA)

o A locally free sheaf E4 over X4, with a morphism 7wy @ E4 — &, such that w4 :
Ea®C — & is an isomorphism.

two such deformation (X4,E) and (X),E") over A are isomorphic, if
e there is an isomorphism of deformations v : X4 — XJ}.

e we have an isomorphism of vector bundles over Xa, p : € — v*(E'), such that
TA =Ty 0.

Definition A.2.13 Let X be a C-scheme and let £ a locally free sheaf on X. The functor
of infinitesimal deformation of the pair (X, E) is the following:

Def x ¢y : Artc — Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformations of the pair (X,E) over Spec(A).

Theorem A.2.14 Let X be a C-scheme and £ a locally free sheaf on X. Then
1. The functor Def x ¢y is a functor with a good deformation theory.
2. If X is a non singular projective variety, the tangent space of the functor Def x ¢y is
isomorphic to H (X, Ax(£)) and H*(X, Ax(£)) is an obstruction space for it, where
Ax(E) is the Atiyah algebroid 3.1.1 associated to the locally free sheaf £.
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APPENDIX A. DEFORMATION FUNCTORS

Remark A.2.15 We have a natural transformation p : Def x ¢y — Defx, which corre-
sponds to the forgetful map, for a deformation of a pair (X,E) over Spec(A)

Ea

|

Xc X4

| |

Spec(C)————— Spec(A)

We associate the deformation X4 of X over Spec(A). Hence we get a C-linear map
H' (X, Ax(£)) — H' (X, Tx)

Example A.2.16 Let X be a projective smooth complex curve of genus g = 2 and let
be a rank-r vector bundle. Take the Atiyah exact sequence (3.1.1)

0 —= End(E) — Ax(E) —= Tx —0

we associate the short-exact sequence in cohomology as dimension is one H*(X, F') = 0 for
any locally free sheaf F and there is no global sections

0 — HY(X, End(E)) —= HY(X, Ax (E)) —= H(X, Tx) —= 0

DefE Def(X7E)(C[€]) —>DefX —>0

0

A.3 Deformations of a quasi-parabolic tuple

Let E = (C, D, E,) where (C, D = Zf\il xz) a marked complex projective smooth curve

and F, a quasi-parabolic vector bundle of rank-r and type m. Following the same pattern
we define for an Artinian C-algebra A a deformation of E over Spec(A), as follow

Definition A.3.1 A deformation of E over T = Spec(A), is given by the following data:
a deformation of marked curves w: (C, D) — T where 7 is a flat morphism, D = Yo;(.5)

and &, a quasi-parabolic vector bundle of rank-r over (C,D) of quasi-parabolic type M, we
denote such data by x = (C,D, ). We have the following fibre product:

Ex

|

(C,D) — (€, D)

l .

Spec(C)— =T
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A.3. DEFORMATIONS OF A QUASI-PARABOLIC TUPLE

and
‘P* (5*) ~ Fy
isomorphic as quasi-parabolic vector bundles over (C, D).
In the following we define a deformation functor for X = (C, D, E,).
Definition A.3.2 (Deformation functor)
For E = (C, D, E,) as before, we define a deformation functor as follows:

Defg : Art¢ — Set
A - DefE(A)a

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformation of E over Spec(A). And two deformations x1 and x2 of E over
A are isomorphic if:

1. 3¢ :(C1,D1) —> (Co, D2) an isomorphism of marked curves over T = Spec(A).

2. 3¢ & —> ¢*(E) an isomorphism of quasi-parabolic vector bundles.

& &
J ¢ |
(C1,Dy) (C2, Do)
Spec(A)

Proposition A.3.3 The deformation functor Defg : Artc —> Set, is a functor with a
good theory of deformation.

Proof. The proof is just an adaptation to the quasi-parabolic case of the proof given in
[Mar09] for the deformation functor for (X, F) where X is a complex variety and E a
vector bundle over X. o

Remark A.3.4 The result remains true in higher dimensions for a compact variety X and
a normal crossing divisor. In this case, the space of obstructions is given by H? (X, AY" (E))
which s trivial in dimension one.
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Chapter B

Rank 2 parabolic vector bundles

In this appendix we present Bertram’s work on rank 2 parabolic bundles [Ber93].
Let C be a smooth projective complex curve of genus g and I = {x1, 29, -, 2y} and
let a, a full flag rank two parabolic type over I, so to each i € I we have
0< CLl(?:) < ClQ(i) < ]i],

we associate the positive integer: p; := as(i) — a1(i) € N.

We get a new data (C, D, k), where

1. C' a smooth projective complex curve of genus g.

N
2. D = ) p; x; an effective divisor of even degree.
i=1
3. An integer k£ > max{p;}.
To such data and ¢ € Pic?(C), we get the space
SMPZ (D, k,0) := SMEZ" (2, a, d)

the moduli space of rank two full flag semi-stable parabolic vector bundles of determinant
0 and parabolic type a,, of dimension

dime SMZ" (D, k,d) =3(g — 1) + deg(Dyea)
—3(g—1) + N.

For any line bundle L over ', we get an isomorphism
-®L : SMY"(D,k,§) — SME"(D,k,éd® L?)
E, — (E® L),

Hence we have two cases:
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1. even degree and we take § = O¢.
2. odd degree and take deg § = +1.

Lemma B.0.1 ([Ber93], Lemma 2.3) If k > 3deg(D), then there is a morphism
¢ SME(D,k,d) — SUc(r,0)
such that over SUE(r,§) the stable locus is a (PL)N-bundle. where N = deg(D,eq).

In fact if degree of ¢ is odd the moduli space SUc(r, d) is smooth. Thus it has a universal

bundle U and we get the following isomorphism of moduli spaces
SME" (D, k,6) =PU,) Xsucwrs) PU,) Xsucws) = Xsuees) PULY)

2

where U, = U|(zyxsuc(rs), and the map ¢ is the natural map.

Example B.0.2 If D = (J, then we get
SMZ" (D, k,0) = SUc(2,0)
and the parabolic determinant bundle ©,, = LF, where L is the ample generator of

Pic(SUe(2, ).

Example B.0.3 If D = px and p < k, then by lemma B.0.1, SME" (D, k,Oc) maps
to SUc(2,0¢) with P'-fibres over SUL(2,O¢). But by Hecke modification it maps to
SU(2,0c(—x)) as follow

Hz . SM%W(D,]{?, Oc) I SU (2,00(—1‘))

E, = (E,D, © E;) > H.(E)=Ker{E — E,/D,}.

as a P-bundle.

In fact, If U is a universal bundle over C' x SU (2, Oc(—x)), then
SMZ"(D,k,Oc) = P(U,))
We get the following diagram called the Hecke correspondence
SMZ (D, k,O¢)
/ X\
SU (2,0¢) SU (2,0c(—x))

Furthermore, let £ and Ly the ample generator of the groups Pic(SU (2,O¢)) and
Pic(SU (2,0c(—x))) respectively. If we denote their pull backs to SME" (D, k,O¢) by ©
and Oy respectively. Then

Oper = OF P @ O

KSM%‘" - 6_2 ® @7__[1
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APPENDIX B. RANK 2 PARABOLIC VECTOR BUNDLES

Proposition B.0.4 (Generalized Hecke correspondence. Lemma.2.4, [Ber93])

Suppose there is j € I, such that k > p; > % degD in the data (C,D,k). Let U be a

unversal bundle on C' x SME" (D, k,Oc(—x;)), Then
1. The moduli space SME" (D, k,O¢) is isomorphic to the fibre product
PU;) X suctroc(-a,)) BUz,) Xsuetr.00(-2,) =+ X sute(roc(-2,)) PUs),)
of P'-bundles over SUc(r, Oc(—x;)).
2. Fori # j, there are morphisms

bji: SME"(D,k,Oc) — SUc(r,Oc(—z; — ;)

in addition to the projections H; and ¢ given in evample B.0.5. We get the following
diagram
SMP" (D, k,O¢)
SU (2,0¢) SU (2,0¢c(—x;)) SUc(r,Oc(—xj — x;))

If we denote ©, Oy, and O;; the pull backs of the ample generators of the groups
Pic(SU (2,0¢)), Pic(SU (2, 0c(—x;))) and Pic(SU (2, Oc(—x; — x;))) respectively.
Then

1de N A
Oper = 01 @O ) @ Ry 61

i#j
(N-2) >
Ksppr =077® 6057 @K 6;7
i#j
Proof. We give an explicit proof. Note that because of the condition k > p; > % degD,

every semistable parabolic bundle is stable. Thus the space SMZ" (D, k, O¢) is smooth.
And we get

E, is stable = E, H;(E) and ¢;,;(E,) = H;(H;(E)) for i # j are semistable.
We recall the Hecke modification over x; with respect to the line D,

0——H;(E) —= E——E,,/D,, —0
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so we have an isomorphism of rank-2 vector bundle over C'\{z;}
H;(B)leviay = Eloes)
and by Lemma 1.4.5 we get
E../D., = M(E) ' @ \(H;(E)). (B.0.1)

We pull-back the parabolic structure over I\{z;}, and at the point z; we get
)a;

In the above diagram the line #;(D,,) is the Hecke transform of the line D, . Thus we get
a parabolic structure over H;(E) with respect to the parabolic divisor I. To this parabolic
bundle we can apply Hecke modification over any element of the divisor I, thus we can
define H;(H,(E)), the associated exact sequence is

0_>/H](D96])_)H

E,,/D,, —0

0 ——Hi(H;(E)) —=H;(E) —H;(E)

By Lemma 1.4.5 we have
By, /Dy, = MH;(E)) ™ @ AHi(H;(E)))- (B.0.2)

We recall the definition of the parabolic determinant bundle. Let & = (£, (D;)i«r) be a
virtual universal bundle over C' x SMZ" (D, k,O¢). Then

N
Opar 1= ANE)* @ R){Es/Di}V @ det(E,)°
i=1
and 2e = ky — deg(D). We use equations (B.0.1) and (B.0.2), to get

Oper = NEVE® {2,/ Dy} (RlEn/ D @ det(E, )

1#]

£)F @ {ME) @AM (E)}” QM) & NHi(H;(E)I" ® det(£,)°

- (M@ @ der(e >’5}“’ " @ (AH,(E))? @ det(E, o } )

(Q){A £)) ®det(£,)+ | @ det(£,)"
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APPENDIX B. RANK 2 PARABOLIC VECTOR BUNDLES

where x =2(1—g), x;j = x — 1, xj: = x — 2 and

N

B k—p; 1 X
q—e—< 5 )x—<pj—2deg(D))xg—;<2>pl
k 1 k—p,; 1 X N
_k 1 _ RV N (X ,
= 5x — 5deg(D) < 5 ) X <pg zdeg(D)) (x—1) <2 1) ;pz
B ko k—p; 1 1 1 1 al
= — <—§ + 5 + p; — §deg(D) + 5 ;jpz> X + (—gdeg(D) +p; — édeg(D) + ;jpz
) ¥ T ¥

and if we denote £, £; and L;,; the ample generators of the groups Pic(SU (2,O¢)),
Pic(SU (2, Oc(—=;))) and Pic(SUc(r, Oc(—z; —x;))), respectively then by Theorem 1.5.2,
we get

Hence

Let calculate the canonical bundle of the space SME" (D, k, O¢). First we may choose the
universal bundle U over C' x SUc(r, Oc(—1;)), such that for every point x € C', AU, = L,
where U, :=U |{x}><SZ/{C(r,Oc(_Ij)). Next we take the Euler exact sequence over

]P’(Z/{V) e SUC(T', Oc(—$j>)

This implies that the relative canonical sheaf is
Key)/suctroc(—e;) = Opwy) (=2) @ Hi (L) -
For this choice of universal bundle, Opy )(1) = ¢7; (£;:) and Opeyy )(—1) = ¢* (L)
N

Ksawer (proo) = Hi (Wsteroc(—) ® (072 ®@04,) @) (057 ® Ox,)

1#£]

N
_ N-2 _
-02e0y YR 62
i#]
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