
Flots approchés de courbure moyenne pour les varifolds
et flots de Brakke limites

Approximate mean curvature flows of varifolds
and limit Brakke flows

Abdelmouksit Sagueni

Thèse de doctorat





THÈSE de DOCTORAT de L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale InfoMaths, ED 512

Spécialité : Mathématiques

Flots approchés de courbure moyenne pour les varifolds
et flots de Brakke limites

Soutenue publiquement le 18 juillet 2024 par

Abdelmouksit Sagueni

devant le jury composé de

Mme Sylvie Benzoni-Gavage Université Claude Bernard Lyon 1 Examinatrice

Mme Blanche Buet Université Paris–Saclay Directrice

Mme Irène Kaltenmark Université Paris Cité Examinatrice

M. Gian Paolo Leonardi Université de Trente (Italie) Directeur

M. Simon Masnou Université Claude Bernard Lyon 1 Directeur

M. Matteo Novaga Université de Pise (Italie) Rapporteur

M. Boris Thibert Université Grenoble Alpes Examinateur

M. Yoshihiro Tonegawa Université de technologie de Tokyo (Japon) Rapporteur





Résumé

Le flot de courbure moyenne d’une surface régulière est caractérisé par le déplacement de
chaque point de la surface selon une vitesse vectorielle égale au vecteur de courbure moyenne,
c’est-à-dire au gradient L2 de la fonctionnelle d’aire de la surface. On rappelle en effet que, pour
une d-sous-variétéM⊂ Rn et un champ de vecteurs X ∈ C1

c (Rn,Rn), la courbure moyenne H de
M est caractérisée par l’équation

d

dt
Hd
(
Φt
X(M)

)
|t=0

= −
ˆ
M
X ·H dHd, (1)

où (Φt
X)t≥0 est le flot engendré par le champ de vecteurs X etHd désigne la mesure de Hausdorff

d-dimensionnelle. Par conséquent, le flot de courbure moyenne deM consiste en l’évolution de la
surface en chacun de ses points dans la direction qui permet de réduire son aire le plus rapidement
possible.

Le flot de courbure moyenne est un modèle emblématique pour de nombreux phénomènes
physiques, il est très utilisé en ingénierie et en sciences du numérique, et il est depuis des années
le sujet de travaux mathématiques à l’interface de l’analyse, de la géométrie, de la théorie de la
mesure, de l’optimisation et du calcul scientifique.

Il est connu que, même partant d’une surface régulière, le flot de courbure moyenne peut
produire des singularités en temps fini. C’est ce qui a motivé l’introduction et l’étude de flots
faibles de courbure moyenne permettant de donner un sens à l’évolution au delà des singularités.
L’un des plus emblématiques de ces flots faibles est le flot introduit par Kenneth Brakke pour
les varifolds [12]. On rappelle qu’un varifold est une mesure de Radon dans Rn × Gd,n, où Gd,n
désigne la grassmanienne des d-plans de Rn. C’est une notion faible de surface qui est utilisée
en théorie de la mesure géométrique car elle présente, sous des hypothèses supplémentaires très
naturelles, des propriétés très intéressantes. En particulier, l’équation (1) peut être étendue aux
varifolds afin de définir une notion généralisée de courbure moyenne. S’appuyant sur cette notion
généralisée, un flot de Brakke est alors caractérisé par une inéquation variationnelle qui permet
d’étendre, bien au delà des surfaces régulières, la notion de flot de courbure moyenne.

Un flot de Brakke partant d’un varifold donné peut être construit comme la limite d’un schéma
itératif sophistiqué qui combine deux étapes : une étape de désingularisation et une étape de dé-
formation dépendant d’une courbure moyenne approchée [12]. Cette construction, et l’alternative
en codimension 1 proposée par Kim & Tonegawa [36], n’est toutefois pas adaptée à des varifolds
qui ne sont pas entiers, c’est-à-dire rectifiables mais à multiplicité non entière, ou non rectifiables.
Or, de nombreuses applications en informatique graphique et en traitement d’images font inter-
venir des structures discrètes (par exemple des nuages de points) de dimension et codimension
très variées et qui ne peuvent pas être associées à des varifolds entiers. L’objectif de cette thèse est
précisément de dépasser cette limitation.

Au chapitre 1, nous rappelons les notions et résultats de théorie de la mesure et de théorie des
varifolds utilisés dans cette thèse. Nous revenons au chapitre 2 sur les notions fortes et faibles de
flot de courbure moyenne, en détaillant plus particulièrement la construction d’un flot de Brakke
due à Kim & Tonegawa [36]. Nous synthétisons au chapitre 3 les différents résultats obtenus dans
la thèse. Nous y discutons aussi des conséquences de ces résultats dans le cas particulier des
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nuages de points (flots de nuages de points, résultat de consistance, schéma numérique) et nous
proposons plusieurs perspectives de recherche.

Il est connu qu’un flot de courbure moyenne régulière est un flot au sens de Brakke. La con-
tribution présentée au chapitre 4 porte sur la préservation d’une propriété à la Brakke quand
on discrétise un flot régulier. Plus précisément, nous considérons un flot de courbure moyenne
M(t)t∈[0,T ] issu d’une sous-variétéM de classe C3 et, pour chaque temps t, une discrétisation vo-
lumique spatiale Vh(t) deM(t). Nous montrons que la discrétisation Vh(t) vérifie une inégalité de
Brakke intégrale approchée avec un terme d’erreur dépendant de la géométrie de la sous-variété
initiale, d’une échelle de régularisation ε utilisée pour la définition d’une courbure moyenne ap-
prochée de Vh(t), et des noyaux utilisés dans la définition de cette courbure moyenne approchée.

Les chapitres 5 et 6 contiennent les résultats principaux de la thèse. Nous réussissons d’abord
à définir au chapitre 5, par un procédé constructif et itératif inspiré des travaux de Brakke [12]
et Kim & Tonegawa [36], un flot approché de courbure moyenne pour une classe très générale
de varifolds pouvant représenter des données très variées, que ce soit des surfaces régulières ou
singulières, des surfaces discrètes, des nuages de points, etc. Plus précisément, pour une échelle
donnée d’approximation ε ∈]0, 1[ et une subdivision T de l’intervalle de temps choisi (par exem-
ple [0, 1]), étant donné un varifold initial général V , nous utilisons une variante de la courbure
moyenne approchée définie dans [36] pour appliquer des poussées en-avant successives à V rel-
ativement à ε et à T . Une interpolation linéaire en temps conduit à un flot approché de courbure
moyenne discret en temps noté (Vε,T (t))t∈[0,1]. Nous prouvons la stabilité de ce flot par rapport à
la subdivision et à la donnée initiale. Puis, grâce à ce résultat de stabilité et pour ε fixé, nous mon-
trons la convergence, lorsque le pas de subdivision tend vers 0, de (Vε,T (t))t∈[0,1] vers un unique
flot noté (Vε(t))t∈[0,1]. Nous prouvons que (Vε(t))t∈[0,1] satisfait une égalité de Brakke par rapport
à son vecteur de courbure moyenne approchée.

Nous considérons ensuite la notion de flot de Brakke spatio-temporel, une mesure sur Rn×Gd,n×
[0, 1] qui étend naturellement la notion de flot de Brakke. En particulier, si W (t)t≥0 est un flot de
Brakke alors W (t) ⊗ dt est un flot de Brakke spatio-temporel. Nous montrons dans le théorème
5.3.7 que, si (Vε(t))t∈[0,1] désigne l’ensemble des flots limites obtenus par la construction décrite
ci-dessus pour une suite d’échelles d’approximation ε tendant vers 0, alors la suite λε := Vε(t)⊗dt
converge (après extraction) vers une limite λ qui admet un vecteur de courbure moyenne borné
dans L2(‖λ‖). En outre, si sa restriction à Rn × Gd,n est rectifiable, alors λ est un flot de Brakke
spatio-temporel.

Dans le chapitre 6, nous nous intéressons aux propriétés en codimension 1 du flot limite λ et,
plus généralement, de flots de Brakke spatio-temporels. Nous prouvons en particulier un résultat
de non trivialité de λ – la possible trivialité est un des inconvénients de la notion de flot de Brakke
– lorsque le varifold de départ est associé à la frontière d’une partition d’ensembles ouverts de
périmètres finis de Rn. Nous prouvons que le support de la composante spatiale d’un flot de
Brakke spatio-temporel est inclus dans l’évolution de la donnée initiale par ensembles de niveau
(motion of level sets) au sens de [22]. Cela découle du fait que le support évite les flots de courbure
moyenne réguliers et, en particulier, nous en déduisons par un principe de comparaison fort que le
support de la composante spatiale d’un flot de Brakke spatio-temporel partant d’une hypersurface
régulière coïncide avec l’évolution par courbure moyenne (au sens classique) de l’hypersurface.
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Chapter 1

Introduction

1.1 Notations

Throughout the thesis, we let d, n ∈ N be such that 1 ≤ d ≤ n, 2 ≤ n and we adopt the following
notations:

• Ln denotes the n-dimensional Lebesgue measure in Rn.

• Hd denotes the d-dimensional Hausdorff measure in Rn.

• Br(x) and B(r, x) denote the open ball of radius r > 0 and center x ∈ Rn. Conventionally
Br denotes the open ball of radius r > 0 and center 0. For closed balls we keep the same
notations and replace B by B.

• For k ∈ N, ωk denotes the volume of the k−dimensional unit ball.

• For any two sets A and B of Rn we define A+B := {a+ b, (a, b) ∈ A×B}.

• For a set A, Aδ :=
⋃
x∈A

Bδ(x) = {y ∈ Rn, d(y,A) < δ}.

• Mp,q is the space of real matrices with p rows, q columns.

• For A ∈Mp,q, B ∈Mq,r we denote either by A ◦B or by AB the product of A and B.

• For two matrices M and N we define the matrix scalar product by

M : N = tr
(
MN t

)
= tr

(
NM t

)
.

• The default matrix norm ‖ · ‖ considered inMp,q is the operator 2-norm associated with the
Euclidean norms | · | in Rp and Rq. We also consider the norm | · |∞ defined as |M |∞ =
maxi=1...p

j=1...q
|Mij |, for M ∈Mp,q and we recall the classical relation:

∀M ∈Mp,q, |M |∞ ≤ ‖M‖ ≤
√
pq |M |∞ . (1.1)

• For k ∈ N and v, w ∈ Rk, 〈v, w〉 :=
k∑
i=1

viwi is the scalar product of v and w.
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• The supremum norm of a measurable function u is ‖u‖∞ := ess-supx |u(x)|.

• C0, C0
c denote the space of continuous functions, and compactly supported continuous func-

tions, respectively.

• C0,1, C0,1
c denote the space of Lipschitz functions, and compactly supported Lipschitz func-

tions, respectively.

• C1 denotes the space of continuously differentiable functions and, for ϕ ∈ C1, ‖ϕ‖C1 :=
‖ϕ‖∞ + ‖Dϕ‖∞.

• C2 denotes the space of continuously differentiable functions and, for ϕ ∈ C2, ‖ϕ‖C2 :=
‖ϕ‖∞ + ‖Dϕ‖∞ + ‖D2ϕ‖∞.

• Gd,n is the Grassmannian manifold of d-dimensional vector subspaces of Rn. We identify
every element S ∈ Gd,n with its orthogonal projection on the d-subspace S ∈ Mn(R). The
distance considered between S, T ∈ Gd,n is ‖S − T‖, where ‖ · ‖ is the default matrix norm
introduced above.

• For Ω ⊂ Rn, Lip
Ω

(f) denotes the Lipschitz coefficient of f on Ω.

• The functions and vectors involved may depend on the space and the time, we convention-
ally use∇ for space derivation and ∂t for time derivation.

• We mean by a closed submanifold, a compact boundaryless submanifold.

• Throughout the introduction and chapter 4, ρ ∈ C3(R+,R+) is a non-increasing function
supported on [0, 1] and ξ ∈ C1(R+,R+) is a function supported on [0, 1], positive on ]0, 1[.
We define ρε and ξε on Rn by

ρε(x) := ρ

(
|x|
ε

)
, ξε(x) := ξ

(
|x|
ε

)
∀x ∈ Rn.

Definition 1.1.1 (Subdivision). For a < b ∈ R and m ≥ 1, T = {ti}mi=0 is called a subdivision of [a, b]
if: a = t0 < t1 · · · < tm = b. We denote:

δ(T ) := max
i
ti − ti−1 i ∈ {1, . . . ,m}.
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1.2 Generalities on measure theory

The central tool used in our work is the space of varifolds. Before going through its definition and
properties, we first introduce the notion of rectifiable sets after reviewing the necessary notions
on convergence and distances between Radon measures.

1.2.1 Radon measures

A measure µ on a locally compact space X is called a Radon measure when it is Borel, regular and
finite on compact sets. The Riesz representation theorem implies that one can view any Radon
measure as a continuous linear form on C0

c (Rn,R) and vice-versa.

The bounded Lipschitz distance will be useful to compare measures and prove convergence.

Definition 1.2.1. (Bounded Lipschitz distance) Let (X, d) be a locally compact separable metric space. The
bounded Lipschitz distance between two finite Radon measures ν, µ on X is defined as

∆(ν, µ) := sup
{∣∣∣ˆ

X
ϕ(x)dν(x)−

ˆ
X
ϕ(x)dµ(x)

∣∣∣ϕ ∈ C0,1(X,R+) and max{‖ϕ‖∞,Lip(ϕ)} ≤ 1
}

(1.2)
We similarly define a localized version of the bounded Lipschitz distance, for any open set U ⊂ X :

∆U (ν, µ) := sup
{∣∣∣ ˆ

U
ϕ(x)dν(x)−

ˆ
U
ϕ(x)dµ(x)

∣∣∣ ϕ ∈ C0,1(X,R+), sptϕ ⊂ U
max{‖ϕ‖∞,Lip(ϕ)} ≤ 1

}
We use throughout our work the weak-∗ convergence of measures, whose definition is now

recalled.

Definition 1.2.2 (Weak-∗ convergence). Let (X, d) be a locally compact and separable metric space. Let
(µi)i∈N, µ be Radon measures on X . We say that: (µi)i converges weakly-∗ to µ if

ˆ
ϕdµi →

ˆ
ϕdµ

for every ϕ ∈ C0
c (X,R).

The following result is a general fact in measure theory (see for instance [42, Theorem 5.9]).

Proposition 1.2.3. Let (X, d) be a locally compact separable metric space. Let (µi)i∈N and µ be finite
Radon measures. Assume that the measures (µi)i∈N and µ are supported in a compact set of X . Then:

µi converges weakly-∗ to µ ⇐⇒ ∆(µi, µ) −−−→
i→∞

0.

1.2.2 Rectifiable sets

Rectifiability is a fundamental notion of weak regularity for sets in the measure theoretic setting.
A rectifiable set admits an approximate tangent space at almost every point, which opens the
way to consistent definitions of mean curvature and second fundamental form, see for instance
[12, 32, 15, 16, 17].
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Definition 1.2.4. (Rectifiable sets [39, Chapter 10])M is (countably) d-rectifiable if and only if there exist
a Borel setM0 ⊂ Rn, countably many Lipschitz maps (fh)h∈N : Rd → Rn and Borel sets (Fh)h∈N ⊂ Rd
such that

M =M0 ∪
(⋃
h∈N

fh(Fh)
)
, with Hd(M0) = 0.

One can view rectifiable sets differently thanks to Whitney’s extension theorem:

Proposition 1.2.5. [43, Lemma 1.1]M is (countably) d-rectifiable if and only if

M =M0 ∪

⋃
j∈N

Nj


whereHd(M0) = 0 and ∀j ∈ N, Nj is contained in some C1 d-submanifold of Rn.

As mentioned before, rectifiable sets admit approximate tangent spaces almost everywhere. To
make this statement more precise, let us first recall the definition of the push-forward operation
on Radon measures. Let (X,µ) be a measurable space and f : X → Y be a measurable map; the
push-forward measure of µ by the map f is defined by

(f#µ)(B) = µ(f−1(B)), for every Borel set B ⊂ Y . (1.3)

We are now able to define the notion of approximate tangent space.

Definition 1.2.6. (Approximate tangent space) Let µ be a Radon measure on Rn, P a d-plane in Rn. P is
said to be the approximate tangent space of µ with multiplicity θ at a point x ∈ Rn if

r−d
ˆ
Rn
ϕ

(
y − x
r

)
dµ(y) −−−−→

r→0+
θ

ˆ
P
ϕ(y) dHd(y), ∀ϕ ∈ C0

c (Rn,R+).

In other words
r−d(τx,r)#µ

∗−−−−⇀
r→0+

θHd|P

where τx,r(·) =
· − x
r

.

Roughly speaking, the blow up of the measure near x gets closer and closer to the Lebesgue
measure on P (up to a constant) as r → 0+. Conversely, a measure that admits an approximate
tangent space almost everywhere is supported on a rectifiable set, and this is the reason why
rectifiable sets and measures hold a significant interest in measure theory. Here is the rigorous
statement:

Theorem 1.2.7. [43, Theorem 1.6] LetM be aHd -measurable set withHd(M∩K) <∞ for each compact
set K ⊂ Rn. Then M is (countably) d-rectifiable if and only if the approximate tangent space exists for
Hd-a.e. x ∈M.
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1.3 Varifolds

1.3.1 Definitions

Definition 1.3.1. (Varifolds) A d-varifold in Rn is a non-negative Radon measure on Rn ×Gd,n.
Vd(Rn) denotes the space of d-varifolds in Rn.

The mass measure ‖V ‖ associated with a varifold V is defined as follows:

‖V ‖(ϕ) :=

ˆ
Rn×Gd,n

ϕ(x) dV (x, S) ∀ϕ ∈ C0
c (Rn,R).

In other words, for every Borel set A ⊂ Rn, we have ‖V ‖(A) = V (A×Gd,n).

In the following, we list classical examples of varifolds.

1. Smooth varifolds: to a d-dimensional submanifoldM in Rn, we associate the varifold V =
Hd|M ⊗ δT·M defined by

V : ϕ ∈ C0
c (Rn ×Gd,n,R) 7→

ˆ
M
ϕ(y, TyM) dHd(y).

The associated mass varifold is ‖V ‖ = Hd|M such that

‖V ‖ : ϕ ∈ C0
c (Rn,R) 7→

ˆ
M
ϕ(y) dHd(y).

2. Rectifiable varifolds: to a d-dimensional rectifiable setM in Rn (Definition 1.2.4), and a non-
negative Hd-integrable function θ onM , we associate the varifold V = θHd|M ⊗ δT·M such
that

V : ϕ ∈ C0
c (Rn ×Gd,n,R) 7→

ˆ
M
ϕ(y, TyM)θ(y) dHd(y),

where TyM is the approximate tangent space of M at y. The associated mass varifold is
defined as ‖V ‖ = θHd|M such that

V : ϕ ∈ C0
c (Rn,R) 7→

ˆ
M
ϕ(y)θ(y) dHd(y).

Integral varifolds: a rectifiable varifold is called integral if θ ∈ N a.e.

3. Point cloud varifolds: to a distribution of points {xj}Nj=1 in Rn, d-planes {Pj}Nj=1 in Gd,n and

masses {mj}Nj=1 in R+, we associate the varifold: V =
N∑
j=1

mjδxj ⊗ δPj such that

V : ϕ ∈ C0
c (Rn ×Gd,n,R) 7→

N∑
j=1

mjϕ(xj , Pj).

Then, the associated mass varifold is defined as: ‖V ‖ =
N∑
j=1

mjδxj such that

V : ϕ ∈ C0
c (Rn,R) 7→

N∑
j=1

mjϕ(xj).

13



Figure 1.1: A rectifiable 1-varifold (left) and a rectifiable 2-varifold (right) (illustration from [13]).

Figure 1.2: A point cloud varifold (illustration from [13]).

From now on, and for a smooth submanifoldM, we denote M := Hd|M ⊗ δTyM and ‖M‖ := Hd|M.

We recall the notion of Ahlfors regularity in the setting of varifolds.

Definition 1.3.2. (Ahlfors regularity) Let V ∈ Vd(Rn). We say that V is Ahlfors regular if its mass
measure ||V || is d-Ahlfors regular, i.e. there exist C0 > 1, r0 > 0 such that for all x ∈ spt ‖V ‖ and
0 < r ≤ r0,

C−1
0 rd ≤ ‖V ‖(B(x, r)) ≤ rdC0. (1.4)

Note that r0 can be chosen as large as needed: if condition (1.4) holds for some r0 > 0 then it holds
for any r1 ≥ r0 possibly adapting the regularity constant C0.

1.3.2 Approximation by discrete varifolds

Volumetric varifolds were introduced to discretize, in the spirit of varifolds, submanifolds of any
dimension and co-dimension, possibly with singularities. In this section, we present some of the
results of [13] on the discretization and the approximation by volumetric varifolds.

Consider an open set Ω ⊂ Rn and h > 0. A mesh K of Ω of size h is a locally finite partition of
Ω into cells, with each cell K ∈ K of diameter less than h.
Given a d-submanifoldM in Ω, we define a volumetric discretization Vh ofM as follows:

Vh =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK (1.5)
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where: |K| = Ln(K), mK = Hd(M∩K), and PK ∈ arg min
S∈Gd,n

ˆ
M∩K

|TyM− S| dHd(y) for any cell

K in K.
The following proposition results from [13, Theorem 2.1] when the approximated rectifiable

varifold is smooth.

Proposition 1.3.3. Let Ω be a open set of Rn, Kh a mesh of Ω. LetM ⊂ Ω be a closed d-submanifold and
M be the varifold associated withM. Let Vh be a volumetric discretization ofM defined as in (1.5). We
have, for any Lipschitz function ϕ on Ω:∣∣∣‖M‖(ϕ)− ‖Vh‖(ϕ)

∣∣∣ ≤ hLip
Ω

(ϕ)‖M‖(spt(ϕ)). (1.6)

In addition, for C > 0 such that,∣∣TxM− TyM∣∣ ≤ C|x− y| ∀x, y ∈M,

and if we denote Π : Ω×Gd,n → Rn, (y, S) 7→ y, for every Lipschitz function ϕ on Ω×Gd,n, we have∣∣∣M(ϕ)− Vh(ϕ)
∣∣∣ ≤ hLip

Ω
(ϕ)(1 + 2C)‖M‖(Π(spt(ϕ))). (1.7)

Figure 1.3: Approximation by volumetric varifolds [13].

We note that in the original statement of [13, Theorem 2.1], y 7→ TyM is a Hölder map with Hölder
coefficient β ∈ (0, 1). One can easily notice that the proof still holds for β = 1. This explains why
the result presented in this section is different from the original one from [13].

1.4 Mean curvature of varifolds: definition and approximations

We introduce in this section the notion of generalized mean curvature for varifolds. Let us first
recall the notions of push-forward (see [46, Section 1.4]) and first variation for varifolds.

Definition 1.4.1. (Push-forward of a varifold) Let V be a varifold in Rn and f a C1 diffeomorphism of Rn.
The push-forward of V by f is the varifold f#V defined for every ϕ ∈ Cc(Rn ×Gd,n,R) by

f#V (ϕ) :=

ˆ
Rn×Gd,n

ϕ(f(x), Df(x)(S))JSf(x) dV (x, S), (1.8)
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where Df(x)(S) is the image of S in Gd,n by the linear isomorphism Df(x) and the tangential Jacobian
JSf(x) is the determinant of the isomorphism Df(x) from S to Df(x)(S) defined as follows: if we write
S̃ = (s1| . . . |sd)t ∈ Md,n where {si}di=1 is an orthonormal basis of S, and if we set Y = Df(x) ◦ S̃t, we
have

JSf(x) := det
(
Y tY

) 1
2 (1.9)

where Df(x) ◦ S̃t is the product of the matrices Df(x) ∈ Mn (identified to a matrix using the canonical
basis ofMn) and S̃t ∈ Mn,d. Moreover, if we denote by P the projection on the space Df(x)(S), we have
(see [45, p. 184])

P = Y (Y tY )−1Y t. (1.10)

Remark 1.4.2. (Push-forward of varifolds vs push-forward of Radon measures).
LetM⊂ Rn be a d-submanifold and f : Rn → Rn be a C1 map. By the area formula, we have

ˆ
f(M)

ϕ(y) dHd(y) =

ˆ
M
ϕ(f(x))JTxMf(x) dHd(x) ∀ϕ ∈ C1

0 (Rn,R+), (1.11)

where JTxMf(x) is the tangential Jacobian of f with respect to TxM. The previous formula ex-
presses the change of a measure of dimension d by a C1 map and inspired Definition 1.4.1.
Now, let A be a measurable set of Rn and µ = Ln|A. By the change of variable formula, which is a
particular case of the area formula, the push-forward measure f#µ defined in (1.3) satisfies:

f#µ(ϕ) =

ˆ
f(A)

ϕ(y) dLn(y) =

ˆ
A
ϕ(f(x))Jf(x) dLn(x), ∀ϕ ∈ C1

0 (Rn,R+),

where Jf is the Jacobian of the map f . Note that Gn,n = Rn, Jf = JRnf and the n-varifold µ⊗ δRn
can be identified naturally with the measure µ. We deduce that the push-forward of varifolds
extends the notion of push-forward for Radon measures in order to take account more accurately
of the dimensionality of the varifold measure.

In the following lemma we exhibit a compatibility property of the push-forward operation.

Lemma 1.4.3. Let V ∈ Vd(Rn) and let f , g be two C1 diffeomorphisms of Rn, we have

f#(g#V ) = (f ◦ g)#(V ).

Proof. Take a test function ϕ ∈ C0
c(Rn ×Gd,n,R+), we have

ˆ
ϕ d(f#(g#V )) =

ˆ
ϕ (f(y), Df(y)(T )) JT f(y) d(g#V )(y, T )

=

ˆ
ϕ ((f(g(x)), Df(g(x))(Dg(x)(S))) JDg(x)(S)f(g(x)) JSg(x) dV (x, S)

=

ˆ
ϕ (f ◦ g(x), D(f ◦ g)(x)(S)) JS(f ◦ g)(x) dV (x, S)

where we used that for (x, S) ∈ Rn ×Gd,n,

Df(g(x))(Dg(x)(S)) = D(f ◦ g)(x)(S) and JDg(x)(S)f(g(x))JSg(x) = JS(f ◦ g)(x)

thanks to the multiplicative property of the determinant.
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We present the formula that expresses the infinitesimal change of the mass measure of a
varifold when pushing by the flow generated by a C1 vector field. For V ∈ Vd(Rn) and X ∈
C1(Rn,Rn), we set for t small:

ft = id + tX.

We have the following formula

∂t‖(ft)#V ‖(Rn)|t=0 = lim
t→0+

1

t

(ˆ
Rn×Gd,n

JSft(x) dV (x, S)−
ˆ
Rn×Gd,n

1 dV (x, S)
)

=

ˆ
Rn×Gd,n

lim
t→0+

1

t
(JSft(x)− 1) dV (x, S)

=

ˆ
Rn×Gd,n

divS X(x) dV (x, S).

where divS X := tr(S ◦DX) is the tangential divergence. This motivates the definition of the first
variation of a varifold that measures the mass variations:

Definition 1.4.4 (First variation). Let V ∈ Vd(Rn) of finite mass. The first variation of V is the map
δV : C1(Rn,Rn)→ R defined by

δV : X ∈ C1(Rn,Rn) 7→
ˆ
Rn×Gd,n

divS(X)(x) dV (x, S). (1.12)

Given ϕ ∈ C1(Rn,R) and X ∈ C1(Rn,Rn), we denote:

δ(V, ϕ)(X) :=

ˆ
Rn×Gd,n

ϕ(x) divS(X)(x) dV (x, S) +

ˆ
Rn×Gd,n

∇ϕ(x) ·X(x) dV (x, S)

= δV (ϕX) +

ˆ
Rn×Gd,n

X(x) · S⊥(∇ϕ(x)) dV (x, S).

(1.13)

The map
δ(V, ·)(·) : (C1(Rn,R),C1(Rn,Rn))→ R,

is called the weighted first variation of the varifold V , it expresses the change of the mass of the
varifold weighted by the function ϕ.

Remark 1.4.5. Note that δ(V, ·)(·) is bilinear and

|δ(V, ϕ)(X)| ≤ n‖X‖C1‖V ‖(Rn) ‖ϕ‖C1 , for all ϕ ∈ C1(Rn,R), X ∈ C1(Rn,Rn).

Given a smooth d-manifoldM, we recall the notation M := Hd|M ⊗ δTxM. For X ∈ C1(Rn,Rn),

δM(X) :=

ˆ
Rn×Gd,n

divS(X)(x) dM(x, S) =

ˆ
M

divTxM(X)(x) dHd(x) = −
ˆ
M
H(x,M)·X(x) dHd(x),

(1.14)
where H(·,M) is the mean curvature vector ofM, defined by

H(·,M) = −
n−d∑
j=1

(divM νj)νj , (1.15)
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where {νj}j is any orthonormal basis of TM⊥.
When the first variation δV of a varifold V is bounded, it can be represented thanks to Riesz’s
representation theorem by a vector Radon measure ‖δV ‖, i.e.

δV (X) =

ˆ
Rn
X · ‖δV ‖.

Then, the Radon-Nikodym theorem implies the existence of a vector H(·, V ) ∈ L1(Rn,Rn, ‖V ‖)
such that

‖δV ‖ = −H(·, V )‖V ‖+ ‖δV ‖s,

where ‖δV ‖s is a vector measure singular with respect to ‖V ‖. H(·, V ) is called the (generalized)
mean curvature of V in reference to (1.14).

Note that δV is not always bounded, for instance when V is a point cloud varifold, thus the
generalized mean curvature cannot be defined in such a situation. It remains however possible to
define an approximate mean curvature by convolution of the mass and the first variation.
Let ϕ ∈ C0(Rn,R), we have

(ξε ∗ ‖V ‖)(ϕ) = V (ξε ∗ ϕ) =

ˆ
Rn

ˆ
Rn
ξε(y − x)ϕ(y) dxd‖V ‖(y) =

ˆ
Rn

(ˆ
Rn
ξε(y − x) d‖V ‖(y)

)
dx

hence we can represent the convolution of the mass by the function

(ξε ∗ ‖V ‖)(x) :=

ˆ
Rn
ξε(y − x) d‖V ‖(y). (1.16)

Similarly, let ϕ ∈ C0(Rn ×Gd,n,R), we have

(ρε ∗ δV )(ϕ) = δV (ρε ∗ ϕ) =

ˆ
Rn×Gd,n

ˆ
Rn
S(∇ρε(y − x))ϕ(y) dxdV (y, S)

=

ˆ
Rn×Gd,n

(ˆ
Rn
S(∇ρε(y − x))ϕ(y) dV (y, S)

)
dx.

We represent the convolution of the first variation by the vector

(ρε ∗ δV )(x) :=

ˆ
Rn
S(∇ρε(y − x)) dV (y, S)dx. (1.17)

Taking the quotient of the convolved first variation and the convolved mass is a natural way of
approximating the mean curvature [15]. For V ∈ Vd(Rn), the approximate mean curvature vector
of V at a point x ∈ Rn is defined by

Hρ,ξ,ε(x, V ) = −
Cξ
Cρ

(ρε ∗ δV )(x)

(ξε ∗ ‖V ‖)(x)
(1.18)

whenever ξε ∗ ‖V ‖(x) > 0, and 0 otherwise, with Cξ and Cρ two normalization constants. [15,
Theorem 4.3] states that if V is rectifiable and has bounded first variation, then

Hρ,ξ,ε(x, V ) −−−→
ε→0

H(x, V )
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for ‖V ‖-a.e x ∈ Rn. This definition has other convergence and stability properties; also, it demon-
strates very satisfactory numerical results for the computation of consistent mean curvature vec-
tors of point clouds and the approximation of mean curvature flow, see [15, 17]. However, because
of a slight lack of regularity, this definition is not well-suited to induce easily a consistent notion
of mean curvature flow for which convergence results can be proved. In section 2.1 we recall
the slightly different definition of approximate mean curvature used by Brakke [12] and Kim &
Tonegawa [36] to construct weak mean curvature flows.

19



20



Chapter 2

Overview on mean curvature flow and
Brakke flow

2.1 Mean curvature flow

2.1.1 Definition

The mean curvature flow (commonly denoted by MCF) is a natural geometric evolution where the
evolving submanifold has a (vector) velocity equal to the mean curvature. From the variational
characterization of the mean curvature vector (Equation (1.14)), we infer that this flow reduces the
total area of a submanifold in the fastest way possible.

Definition 2.1.1. (Mean curvature flow) LetM be a Ck manifold, k ≥ 2. A family of Ck-embeddings of
M into Rn

F :M× [0, T ]→ Rn

is said to be a mean curvature flow if

∂F

∂t
(x, t) = H(F (x, t), F (M, t))

where H(F (x, t), F (M, t)) is the mean curvature vector ofMt = F (M, t) at xt = F (x, t) as in (1.15).

The mean curvature flow equation can be written equivalently as :

∂F

∂t
(x, t) = ∆gtF (x, t) (2.1)

where ∆gt is the Laplace-Beltrami operator. By the theory of pseudo-parabolic PDEs (see [21,
Chapter 3]), Equation (2.1) has a smooth solution defined on a nontrivial time interval.

Examples of mean curvature evolutions:

1. Minimal surfaces, i.e. surfaces such that "H = 0": the mean curvature flow is constant equal
to the initial submanifold.
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2. Spheres: the motion by the mean curvature flow of a d-sphere in Rn of radius R is the family
of spheres of radius R(t), where

R(t) =
√
R2 − 2dt, t ∈ [0, R2/2d].

3. Cylinders: let SkR be a k-sphere of radius R and define CR := SkR × Rm, where k + m < n.
The motion of the cylinder CR is the family of cylinders CR(t) = SkR(t) × Rm where

R(t) =
√
R2 − 2kt, t ∈ [0, R2/2k].

4. Translating solitons: they correspond to mean curvature flows of hypersurfaces satisfying

H(x) = 〈~n(x), v〉~n(x)

along the flow, where v is a constant vector in Rn and ~n is the normal (to the submanifold)
at the point x, see [31, 26, 29] for more details and illustrations.

To see why spheres move in such a way, first we note that the mean curvature equation (2.1) is
invariant under isometric transformations, hence, if starting from a sphere, the flow must be a
flow of spheres at any time (as long as it exists). We now compute the radius of the evolving
sphere, denoted by R(t). We recall that, for a d-sphere in Rn, of radius R, one has for any x

H(x) = −d x

R2
.

The mean curvature vector is pointing inward, hence the radius is decreasing (which is not sur-
prising as the area decreases along the flow) and ∂tR(t) = −|H|. Thus,

∂tR(t)2 = 2 ∂tR(t)R(t) = −2|H|R(t) = −2d

which yields R(t)2 = R(0)2 − 2dt and concludes the proof. We use the same reasoning (i.e. ex-
ploiting the symmetries of the equation) to deduce the law describing the evolution of cylinders.

In the following, we list out some of the important results regarding the mean curvature flow
of submanifolds. We start with the case of curves in R2.

Theorem 2.1.2 (Grayson, [26, 27]). The mean curvature flow shrinks embedded closed curves in R2 into
single points in finite time. The extinction time is equal to A/2π where A is the area of the region enclosed
by the curve.

For hypersurfaces, we have the following result:

Theorem 2.1.3 (Huisken, [30]). A hypersurface is said to be mean convex if H · ~n ≥ 0, ~n being the
inward normal vector. The mean curvature flow shrinks compact mean convex hypersurfaces of Rn into
round points in finite time, i.e when rescaling to have a constant volume inside the hypersurfaces, the flow
converges to a (n− 1)-sphere.
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Figure 2.1: Appearance of singularities in a mean curvature flow.

2.1.2 Appearance of singularities

From the previous theorems, one could think that the mean curvature flow transforms every com-
pact submanifold into a point in finite time. However, apart from closed curves in R2 and mean
convex hypersurfaces, there is no guarantee that the flow shrinks to a point in finite (or even in-
finite) time. Often, the mean curvature flow develops complex singularities in finite time. Before
exhibiting an example, we first need to recall two of the main results on mean curvature flow.

Theorem 2.1.4 (Comparison principle). LetM and N be two compact hypersurfaces of Rn. IfM and
N are disjoint then their mean curvature flows are disjoint.

Proof. The proof is an application of the comparison principle valid for parabolic PDEs [40, Theo-
rem 2.2.1].

Proposition 2.1.5 (Angenent torus, [7]). Under the mean curvature flow, there exists a torus of R2 that
shrinks homothetically to a point in finite time. Every torus with this property is called an Angenent torus.

Following Angenent, we are now able to construct in R3 an example of a mean curvature flow
that develops a singularity in finite time. We consider as in Figure 2.1:

1. a surface diffeomorphic to S2 with a neck;

2. an Angenent torus circling the neck of the surface;

3. two spheres inside the surface, one on each side of the neck.

We choose the radius of the spheres big enough so that the flow of the torus disappears before the
flow of the two spheres. The spheres shrinks to their centers, hence by the comparison principle
(Theorem 2.1.4), the spheres prevent the surface from passing through the torus during the flow.
Thus, the neck pinches at the extinction point of the torus as shown in Figure 2.1.

2.2 Weak mean curvature flows: Brakke’s approach and Kim & Tone-
gawa’s adaptation

To extend the definition of the mean curvature flow beyond singularities, several approaches have
been proposed that yield weak notions of mean curvature flow:

• The Brakke flow [12, 36], defined in the setting of rectifiable varifolds and for arbitrary codi-
mensions. It is obtained as the limit of approximating flows constructed by successive push-
forwards applied on an initial varifold, with velocity equal to the approximate mean curva-
ture (Definition 2.6).
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• The level set formulation, based on an implicit representation of the evolving interface and
the PDE satisfied by this representation [22, 23, 25, 24, 18, 6].

• Phase fields methods, based on diffuse representations of evolving interfaces and associated
reaction-diffusion PDEs [3, 33, 28].

• The elliptic regularization of the mean curvature equation [35].

• A discretization of the mean curvature equation in the BV setting [38, 4, 20].

• De Giorgi’s method of minimal barriers [19, 6, 11, 10].

Further references and details can be found in [9, 44].

Among the above mentioned approaches, only Brakke flows, level set flows, and flows based
on De Giorgi’s barriers can be considered in higher codimension. However, Brakke flows seem
more easily extendable to handle the case of unstructured data such as point clouds.

Based on a precise study of the Brakke flow, and the adaptation due to Kim & Tonegawa, we
have been able to propose the construction detailed in this manuscript of mean curvature flows or
approximate mean curvature flows valid for general varifolds, including point clouds and surfaces
with singularities, in arbitrary codimension. More precisely, Chapter 5 contains the following: for
any varifold with compact support and arbitrary codimension

1. we provide a definition of a time-discrete approximate mean curvature flow with respect to
a scale of approximation ε > 0 and a time subdivision T ;

2. we provide a definition of an approximate mean curvature flow with respect to ε as a limit
of the flow constructed in 1. when the time step δ(T )→ 0.

3. we consider the measure defined in 2. coupled with the time measure dt and exhibit a limit
as the scale of approximation ε tends to 0. Under a rectifiability assumption on the limit
measure, we prove that it satisfies a spacetime Brakke inequality. This limit measure can be
interpreted as a spacetime track of a generalized Brakke flow.

Kim & Tonegawa adapted Brakke’s construction in the codimension 1 case when the initial
datum is a boundary of an open partition of Rn (Definition 2.2.3). They managed to construct a
Brakke flow that is not trivial, i.e. does not vanish instantly (see Section 2.2.6). We give below a
brief overview of their construction, based on [46, 36], because it is important for our own con-
struction. As we go along, we highlight the changes with respect to the original construction of
Brakke.

2.2.1 Definition of Brakke’s mean curvature flow

Let (Mt)t∈[0,T ] be a mean curvature flow (section 2.1) and (Mt)t∈[0,T ] the associated family of vari-
folds, i.e. Mt = Hd|Mt

⊗ δT·Mt , ∀t ∈ [0, 1]. The idea behind Brakke’s solution to the mean curvature
flow is to look for an integral version of the mean curvature equation (see [46, Section 2.1] for more
details). In the measure theoretic setting, the quantities{ˆ

Mt

ϕ(y, t) dHd(y), ϕ ∈ Cc(Rn × [0, T ],R+)
}
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fully characterize the family (Mt)t∈[0,T ] of measures in Rn. Taking the derivative when ϕ ∈
C1
c (Rn × [0, T ],R+) gives:

∂t

ˆ
Mt

ϕ(y, t) dHd(y) = δ (Mt, ϕ) (H(·,Mt)) +

ˆ
Mt

∂tϕ(y, t) dHd(y)

=

ˆ
Mt

(
ϕ(y, t) divTyMt H(y,Mt) +∇ϕ(y, t) ·H(y,Mt) + ∂tϕ(y, t)

)
dHd(y)

= δMt(ϕ(·, t)H(·,Mt)) +

ˆ
Mt

(
(TyMt)

⊥(∇ϕ(y, t)
)
·H(y,Mt) + ∂tϕ(y, t)

)
dHd(y),

where we used (1.13) with X a compactly supported smooth extension of H(·,Mt) on Rn. From
(1.14) we obtain

∂t

ˆ
Mt

ϕ(y, t) dHd(y) =

ˆ
Mt

(
−ϕ(y, t)|H(y,Mt)|2+(TyMt)

⊥(∇ϕ(y, t)
)
·H(y,Mt)+∂tϕ(y, t)

)
dHd(y).

(2.2)
Integrating between t1 and t2 in the interval [0, T ] gives

‖Mt‖ (ϕ(·, t))
∣∣∣t=t2
t=t1

=

ˆ t2

t1

ˆ
Mt

−ϕ(y, t)|H(y,Mt)|2 + (TyMt)
⊥(∇ϕ(y, t)

)
·H(y,Mt) dHd(y)dt

+

ˆ t2

t1

ˆ
Mt

∂tϕ(y, t) dHd(y)dt.

(2.3)

One can prove (see [46, Chapter 2]) that any family of submanifolds (Mt)t∈[0,T ] whose spacetime
track is C2 and satisfies (2.3) is a classical mean curvature flow. This proves the consistency in the
regular case. Equation (2.3) leads naturally to a weak notion of mean curvature flow for varifolds
of bounded variation provided by the following definition from [46, Section 2].

Definition 2.2.1. A family (Vt)t∈[0,T ] ⊂ Vd(Rn) is called a Brakke flow if,

1. For a.e. t ∈ [0, T ], Vt is integral.

2. For any compact K and t < T , sups∈[0,t] ‖Vs‖(K) <∞.

3. For a.e. t ∈ [0, T ], Vt has locally bounded first variation and ‖δVt‖ � ‖Vt‖.

4. H(·, Vt) ∈ L2
loc(‖Vt‖ × dt).

5. (Vt)t∈[0,T ] satisfies the Brakke inequality, i.e. for 0 ≤ t1 ≤ t2 ≤ T and ϕ ∈ C1
c (Rn × [0, T ],R+), we

have

‖Vt‖(ϕ(·, t))
∣∣∣t=t2
t=t1
≤
ˆ t2

t1

ˆ
Rn
−ϕ(x, t)|H(x, Vt)|2 +∇ϕ(x, t) ·H(x, Vt) + ∂tϕ(x, t) d‖Vt‖(x)dt.

(2.4)

We make the following comments about the definition:
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• Brakke worked in [12] with rectifiable varifolds, and with the inequality:

D+‖Vt‖(ϕ(·, t)) ≤
ˆ
Rn
−ϕ(y, t)|H(y, Vt)|2 + (TyVt)

⊥(∇ϕ(y, t)
)
·H(y, Vt) d‖Vt‖(y), (2.5)

where D+ is the upper derivative.

• The absence of (TyMt)
⊥ in inequality (2.4) compared to (2.5) is due to the orthogonality of

the mean curvature of integral varifolds [12, Theorem 5.8].

• Brakke as well as Kim & Tonegawa use an inequality to characterize the flow, instead of
an equality as in (2.3). The reason behind is to allow sudden loss of mass and changes of
topology (cf. Section 2.2.6 for illustrations). The main problem arising from this convention
is the possibility that the construction gives a trivial Brakke flow, i.e. Vt = 0, ∀t > 0. With
Brakke’s construction, the triviality issue is not excluded even in the very regular case, in
contrast with Kim & Tonegawa’s approach.

• In order to introduce more flexibility, Brakke worked with an upper derivative instead of a
strict derivative, whereas Kim & Tonegawa used an integrated Brakke inequality to avoid
the differentiation of ‖Vt‖. An interesting consequence of Kim & Tonegawa’s choice is that
the definition can be more easily extended to handle a velocity of the form h+v, where v is a
time independent integrable vector field. We note that both definitions (Brakke’s inequality
with derivation or integration) are somehow equivalent, see [37] for details.

• Brakke also showed that in the case where the initial datum is integral, the constructed flow
is integral as well, hence the inequality holds with no orthogonal projection in (TyVt)

⊥.

Brakke’s flow is obtained as the continuous limit of an iterated discrete two-step scheme. The
first step involves a de-singularization map (Section 2.2.3) and is essential to go beyond singu-
larities. The second step uses a map with velocity equal to the approximate mean curvature (see
Section 2.2.2). According to the choice of a de-singularization made during the construction, sev-
eral possible flows can be obtained in the limit, see Figure 2.2.

Figure 2.2: Non-uniqueness of the Brakke flow.

2.2.2 Approximate mean curvature

Define for each ε ∈ (0, 1):

Φ̂ε(x) :=
1

(2πε2)
n
2

exp
(
− |x|

2

2ε2

)
.
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and consider a truncation of Φ̂ε supported on the unit ball, denoted by Φε. The approximate mean
curvature vector at a point x ∈ Rn of a varifold V with finite mass is defined by Kim & Tonegawa
as follows:

hε(x, V ) = (Φε ∗ h̃ε(·, V ))(x) , where h̃ε(y, V ) = − (δV ∗ Φε)(y)

(‖V ‖ ∗ Φε)(y) + ε
for any y ∈ Rn. (2.6)

The double convolution adds regularity, the ε in the denominator allows to define the approximate
mean curvature on all Rn, even when (‖V ‖ ∗ Φε)(y) = 0.
We note that the original definition of Brakke has no ε in the denominator, it uses instead a non-

truncated Gaussian-like kernel of the form exp
(
− |x|2

ε2 + ε4|x|

)
, up to a normalization constant

β(ε). The choice of a Gaussian kernel is made so that the derivatives of the kernel are bounded by
the kernel up to ε to a negative power. Hence ‖hε‖C2 is bounded by a negative power of ε.

The approximate mean curvature hε enjoys a C1 boundedness property, stated as follows:

Proposition 2.2.2. [46, Lemma 4.2] Let M ≥ 0 and V ∈ Vd(Rn), assume that ‖V ‖(Rn) ≤ M . There
exists a constant c depending only on n and M such that

sup
x∈Rn,ε∈(0,1)

{ε2|hε(x, V )|, ε4|∇hε(x, V )|} ≤ c.

The previous property implies that, for a small ∆t, the map Id + ∆thε is C1.

2.2.3 De-singularizing maps and open partitions

To introduce the de-singularizing maps, we first introduce the notion of open partitions. The
following definition corresponds [36, Definition 4.1] with an extra condition on the boundedness
of the boundary to simplify the presentation. In other words, we impose that one and only one of
the open sets of the collection is unbounded.

Definition 2.2.3. Fix N ≥ 2. A finite and ordered collection of sets E = {Ei}Ni=1 in Rn is called an open
partition of N elements if:

1. E1, . . . , EN are open and mutually disjoint,

2. Hn−1

(
Rn \

N⋃
i=1

Ei

)
<∞,

3.
N⋃
i=1

∂Ei is countably (n− 1)-rectifiable and bounded.

The set of all open partitions of N elements is denoted by OPN .

The fact thatHn−1

(
Rn \

N⋃
i=1

Ei

)
<∞ implies that Rn \

N⋃
i=1

Ei =
N⋃
i=1

∂Ei.

We now introduce a set of maps that preserve the set of open partitions:

Definition 2.2.4. (Admissible functions [46, Definition 4.4]) Given E = {Ei}Ni=1 ∈ OPN , a function
f : Rn → Rn is called E-admissible if it is Lipschitz and satisfies the following. Define Ẽi := int(f(Ei))
for each i. Then:
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(a) {Ẽi}Ni=1 are mutually disjoint,

(b) Rn \
N⋃
i=1

Ẽi ⊂ f(
N⋃
i=1

∂Ei).

We denote f?E := {Ẽi}Ni=1 and it is easy to see that f?E ∈ OPN . Also, we denote f?(∂E) := ∂f?E .

Now we introduce the definition of the de-singularizing maps, also called "area-reducing ad-
missible functions". Before that, we first introduce a set of test functions and vector fields that
allow to localize the operation f?.

Definition 2.2.5. (Restricted test functions and vector fields, [46, Definition 4.7])
For j ∈ N, define

Aj := {ϕ ∈ C2(Rn,R+) : ϕ(x) ≤ 1, |∇ϕ(x)| ≤ jϕ(x), ‖∇2ϕ(x)‖ ≤ jϕ(x) for allx ∈ Rn},

Bj := {g ∈ C2(Rn;Rn) : |g(x)| ≤ j, ‖∇g(x)‖ ≤ j, ‖∇2g(x)‖ ≤ j for allx ∈ Rn and ‖g‖L2(Rn) ≤ j}.

Definition 2.2.6. (Area-reducing admissible functions [46, Definition 4.8]) For E = {Ei}Ni=1 ∈ OPN and
j ∈ N, define E(E , j) to be the set of all E-admissible functions f : Rn → Rn such that:

1. |f(x)− x| ≤ j−2, ∀x ∈ Rn;

2. Ln(Ẽi∆Ei) ≤ j−1 for all i ∈ {1, . . . , N}, where {Ẽi}Ni=1 = f?E ;

3. ‖∂f?E‖(ϕ) ≤ ‖∂E‖(ϕ) for all ϕ ∈ Aj .

We now define a measure of how much the operation f? can change the total mass of an open
partition.

Definition 2.2.7. For E ∈ OPN and j ∈ N, we define

∆j‖∂E‖ := ∆j‖∂E‖(Rn) := inf
f∈E(E,j)

(‖∂f?E‖(Rn)− ‖∂E‖(Rn)) .

As f = id ∈ E(E , j), ∀j ∈ N, we have ∆j ≤ 0, ∀j ∈ N.

We make the following comments about the definitions:

• Condition 2 in Definition 2.2.6 has no equivalent in Brakke’s work, since Brakke uses rec-
tifiable varifolds of arbitrary codimensions. In Brakke’s work, the operation f? is replaced
by a standard varifold push-forward. Brakke distinguishes two models: the normal (i.e.
standard) model and the reduced mass model. In the first model, the image varifold of a
rectifiable varifold V is f#V . In the second model, the image varifold is the varifold asso-
ciated to spt f#V . The major difference between the two is that the second model does not
change varifolds with zero mean curvature, see [12, Appendix C4] for details.

• (About condition 3 of Definition 2.2.6). As ϕ ≡ 1 ∈ Aj for all j, we have ‖∂f?E‖(Rn) ≤
‖∂E‖(Rn), hence the decrease of the mass. Moreover, f cannot move smooth parts for j
large enough and operates only around singularities (see [46, pp. 57-58] and [12, Theorem
4.15 ]). This explains why we qualify such functions as "de-singularizing". In figure 2.3 we
present the effect of the de-singularizing maps on some famous configurations (junctions).
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Figure 2.3: Two examples of de-singularization operations [46, p. 56].

2.2.4 Construction of the approximate flow

With the definitions that precede, we can construct an approximate flow starting from any open
partition of finite mass. Given j ∈ N, we choose εj ≈ j−6 and ∆tj ≈ ε3n+20

j (the choices are justified
in [36]); we choose for simplicity ∆tj of the form 2−pj , pj ∈ N, ∀j ∈ N. Let E ∈ OPN be such that

Hn−1(∂E) := Hn−1

(
N⋃
i=1

∂Ei

)
< ∞. We define an approximate flow (∂Ej,k)k, k ∈ {0, . . . , j∆t−1

j }

inductively as follows.

1. For k = 0, set Ej,0 := E and ∂Ej,0 := ∂E .

2. Assuming inductively that Ej,k−1 is defined until some k ∈ {0, . . . , j∆t−1
j }, choose

fj,k ∈ E(Ej,k−1, j)

such that
‖∂(fj,k)?Ej,k−1‖(Rn)− ‖∂Ej,k−1‖(Rn) ≤ (1− j−5)∆j‖∂Ej,k−1‖, (2.7)

and define
E∗j,k := (fj,k)?Ej,k−1.

3. Define f̂j,k(x) := x + ∆tjhεj (∂E∗j,k, x), for j large enough the map f̂j,k is a diffeomorphism,
then define

Ej,k := (f̂j,k)#E∗j,k.

Studying the change of the mass of the flow (∂Ej,k)k under the two operations above gives the
following result, which combines [46, Lemmas 4.15 and 4.16].

Proposition 2.2.8. Given E ∈ OPN such that Hn−1(∂E) ≤ M < ∞, j ∈ N. For εj ≈ j−6 and
∆tj ≈ ε3n+20

j , the flow (∂Ej,k)k satisfies:

‖∂Ej,k‖(Rn)− ‖∂Ej,k−1‖(Rn)

∆tj
+

ˆ
Rn

|Φεj ∗ δ(∂Ej,k)|2

Φεj ∗ ‖∂Ej,k‖+ εj
dx− (1− j−5)

∆tj
∆j‖Ej,k−1‖ ≤ c(n,M)εj (2.8)
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‖∂Ej,k‖(ϕ)− ‖∂Ej,k−1‖(ϕ)

∆tj
≤ δ (∂Ej,k, ϕ)

(
hεj (·, ∂Ej,k)

)
+ ε

1
8
j , (2.9)

for k ∈ {0, . . . , j∆t−1
j } and ϕ ∈ Aj .

Inequality (2.9) is the discrete analogous of

‖Mt1‖(ϕ)− ‖Mt2‖(ϕ) ≤ −
ˆ t2

t1

ˆ
Rn
ϕ|H(·,Mt)|2 + T·M

⊥
t ∇ϕ ·H(·,Mt) dHddt. (2.10)

satisfied by any d-mean curvature flow (Mt)t≥0 and for any ϕ ∈ C1
c (Rn,R+).

We make the following comments about the construction:

• The factor (1−j−5) is somewhat arbitrary; as the minimizer of ∆j may not exist, one chooses
a map that is almost a minimizer.

• The construction works fine for E with Hn−1(∂E ∩ Br) ≤ ec r, ∀r ≥ 0 for some c ≥ 0, up to
some slight changes. We adopted the finite mass case (as in [46]) for its simplicity.

• The construction of the approximate flow, ignoring the de-singularizing step, makes sense
for any type of varifolds. One can construct an approximate flow starting from any arbitrary
varifold and get the estimates (2.8) (without the term in ∆j) and (2.9), this is precisely the
starting point of the work presented in chapter 5.

2.2.5 Convergence to a Brakke flow

It is convenient to define the approximate flow for all t ∈ [0, j], j ∈ N, instead of discrete times.
Define

Ej(t) := Ej,k if t ∈ ((k − 1)∆tj , k∆tj ] (2.11)

for k ∈ {0, . . . , j∆t−1
j }, and consider the boundary ∂Ej(t) of Ej(t) for all t ∈ [0, j]. We now discuss

the convergence of the flow represented by ∂Ej(t), and the proof that the limit flow is a Brakke
flow (Definition 2.2.1). For simplicity, we restrict the study on a time interval [0, T ], with T dyadic,
and we give a sketchy proof in several steps.

Step 1: Convergence of the mass measure ∂Ej(t)t∈[0,T ] and the proof of property (2) in Definition
2.2.1.
Note that the second and third terms on the left hand side (LHS) of (2.8) are positive, and removing
them from the inequality gives:

‖∂Ej(t)‖(Rn) ≤ ‖∂E‖(Rn) + c(n,M)∆tjεj . (2.12)

Therefore, ‖∂Ej(t)‖(Rn) is bounded for any j ∈ N. By Banach-Alaoglu compactness theorem, one
deduces the convergence of ‖∂Ej(t)‖(Rn), up to an extraction depending on t ∈ [0, T ], to a Radon
measure µ(t) on Rn. The next goal is to find a subsequence (j′) allowing the convergence inde-
pendently of t. Let D be the set of dyadic numbers in [0, T ]. By a diagonal extraction argument,
one can choose a sequence (j′) for which ∂E ′j(t) converges for every t ∈ D to a limit measure,
denoted by µ(t), t ∈ D. The following continuity result allows to extend the definition of µ(t) to
all t ∈ [0, T ] and to prove that

‖∂Ej′(t)‖⇀ µ(t) for all t ∈ [0, T ].
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Lemma 2.2.9. [46, Lemma 4.18] Let ϕ ∈ C2
c (Rn,R+). Define

g(t) := µ(t)(ϕ)− t‖∇2ϕ‖∞‖∂E‖(Rn).

Then g is a monotone decreasing function on D.

Taking the limit in (2.12) we prove that µ(t)(Rn) ≤ ‖∂E‖(Rn) < ∞ for all t ∈ [0, T ]. We note that
the sequence ∂Ej′(t) does not converge necessarily. In fact, we are not sure of the existence of a
sequence (j′) not depending on t allowing the convergence of ∂Ej′(t) for a.e. t ∈ [0, 1]. The reason
behind is that we do not dispose of a continuity property for t 7→ limj ∂Ej′(t) similar to Lemma
2.2.9.
If V (t) denotes the limit of ∂Ej(t) under any extraction, we already know that

‖V (t)‖(Rn) = µ(t)(Rn) <∞ ∀t ∈ [0, T ]

which proves property (2) of Definition 2.2.1. The interested reader might refer to Proposition
5.3.10 for a similar and detailed proof of Step 1 (slightly adapted to our context).

Step 2: Proof of properties (3) and (4) of Definition 2.2.1.
We start with a property that links up hε(·, V ) to δV .

Lemma 2.2.10. [36, Proposition 5.5] There exists ε0 ∈ (0, 1) depending on n and M with the following
property. Consider V ∈ Vn−1(Rn) with ‖V ‖(Rn) ≤ M, ε ∈ (0, ε0), g ∈ Bj (Definition 2.2.5) and j ∈ N
satisfying ε ≤ (2j)−6. Then we have

∣∣∣ ˆ
Rn
hε · g d‖V ‖+ δV (g)

∣∣∣ ≤ ε 1
4 + ε

1
4

(ˆ
Rn

|Φε ∗ δV |2

Φε ∗ ‖V ‖+ ε
dx

) 1
2

.

We note that by integrating 2.8 between 0 and T , and removing the positive term −∆j , we have:

ˆ T

0

ˆ
Rn

|Φεj ∗ δ(∂Ej(t))|2

Φεj ∗ ‖∂Ej(t)‖+ εj
dxdt ≤ ‖∂E‖(Rn) + Tc(n,M)εj .

Fatou’s lemma implies that

lim inf
j

ˆ
Rn

|Φεj ∗ δ(∂Ej(t))|2

Φεj ∗ ‖∂Ej(t)‖+ εj
dx <∞ for a.e t ∈ [0, T ]. (2.13)

The following formal estimate is stated and proved rigorously in [36, Section 5]:

ˆ
|hε(·, V )|2d‖V ‖ ≈

ˆ |Φεj ∗ δ(∂Ej(t))|2(
Φεj ∗ ‖∂Ej(t)‖+ εj

)2 d(Φε ∗ ‖V ‖) ≈
ˆ |Φεj ∗ δ(∂Ej(t))|2

Φεj ∗ ‖∂Ej(t)‖+ εj
dx. (2.14)

For a generic t ∈ [0, T ], let (jt)j∈N be a sequence such that ∂Ejt(t) converges, denote its limit by
V (t), and assume in addition that

lim sup
j

ˆ
Rn

|Φεjt
∗ δ(∂Ejt(t))|2

Φεjt
∗ ‖∂Ejt(t)‖+ εjt

dx <∞. (2.15)
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From Lemma 2.2.10 with V = ∂Ejt(t) and estimates (2.15) and (2.14), one can prove for a.e. t ∈
[0, 1] that V (t) has bounded first variation,

δV (t)(X) = −
ˆ
Rn
X ·H(·, V (t)) d‖V (t)‖ ∀X ∈ C1

c (Rn,Rn),

and that ˆ
Rn
|H(·, V (t))|2 d‖V (t)‖ ≤ lim sup

j

ˆ
Rn

|Φεjt
∗ δ(∂Ejt(t))|2

Φεjt
∗ ‖∂Ejt(t)‖+ εjt

dx <∞.

This concludes step 2.

Step 3: proof of the integrality of the limit (property (1) Definition 2.2.1). Let (V (t))t∈[0,T ] be as
defined in step 2. The proof of Kim & Tonegawa is a direct adaptation of the original proof of
Brakke to the case of open partitions.
Integrating (2.8) in time, after removing the second term of the LHS, gives

ˆ T

0

(1− j−5)

∆tj

∣∣∣∆j‖Ej(t)‖
∣∣∣ ≤ Tc(n,M)εj + ‖∂E‖(Rn).

Thus, for any sequence (αj)j∈N such that lim
j

∆tjα
−1
j = 0, one has

lim
j

ˆ T

0

∣∣∣∆j‖Ej(t)‖
∣∣∣α−1
j dt = 0.

thus possibly choosing a further subsequence

lim
j

∆j‖Ej(t)‖α−1
j = 0, ∀t ∈ [0, T ]. (2.16)

Fix a generic t ∈ [0, T ], we know from step 2 that V (t) has bounded first variation. Then if we can
prove that the density of V (t) is bounded from below, Allard’s rectifiability theorem [2, Theorem
5.5] implies that V (t) is rectifiable. To do so, we assume by contradiction that the density of V (t)
is not bounded from below; hence, for any c > 0 there exists a set Ac of positive measure such that
‖V (t)‖(B(x, r)) ≤ crn−1, ∀r ≥ 0, ∀x ∈ Ac. We recall that V (t) is the limit of ∂Ej(t); then for any
constant c > 0, for j large enough, there exists a set Aj,c of positive measure (almost equal to the
measure of Ac) such that

‖∂Ej(t)‖(B(x, r)) ≤ crn−1, ∀r ≥ 0, ∀x ∈ Aj,c.

On the other hand, one can prove that there exists a constant c̃ > 0 depending on n such that, if
‖∂Ej(t)‖(B(x, r)) ≤ c̃rn−1, then there is a de-singularizing map which reduces the mass by 1/2 in
B(x, r). This means that there is a de-singularizing map that reduces the measure of ∂Ej(t) by 1

2
times the measure of Aj,c and this contradicts (2.16) for αj = 1 (which says that ∂Ej(t) is almost
a minimizer). The proof of the integrality is delicate and uses several arguments from geometric
measure theory, we refer the reader to [46, Section 4.8] for a brief explanation of the proof and to
[36, Section 8] for a complete proof.

Step 4: proof of the Brakke inequality (property (5) of Definition 2.2.1).

32



Fix a test function ϕ ∈ C1
c (Rn × [0, T ],R+) and assume without loss of generality that ‖ϕ‖∞ < 1.

Define ϕi = ϕ + i−1, i ∈ N; for i large enough we have ‖ϕi‖∞ < 1. Moreover, one can prove that
there exists j0 such that ϕi(·, t) ∈ Aj , ∀j ≥ j0 and ∀t ∈ [0, T ]. To prove the Brakke inequality, we
plug ϕi into the discrete Brakke inequality and take the limit first in j then in i.
Plugging ϕi(·, t) into (2.9), using (2.11) we obtain for any t ∈ D:

‖∂Ej(t)‖(ϕi(·, t))− ‖∂Ej(t−∆tj)‖(ϕi(·, t)) ≤ ∆tjδ (∂Ej(t), ϕi(·, t))
(
hεj (·, ∂Ej(t))

)
+ ∆tjε

1
8
j .

Therefore,

‖∂Ej(s)‖(ϕi(·, s))
∣∣∣s=t
s=t−∆tj

− ‖∂Ej(t−∆tj)‖ (ϕi(·, t)− ϕi(·, t−∆tj))

≤ ∆tjδ (∂Ej(t), ϕi(·, t))
(
hεj (·, ∂Ej(t))

)
+ ∆tjε

1
8
j .

(2.17)

Formally we have

‖∂Ej(t−∆tj)‖ (ϕi(·, t)− ϕi(·, t−∆tj)) ≈ ∆tj‖∂Ej(t−∆tj)‖ (∂tϕi(·, t−∆tj)) . (2.18)

Let t1, t2 ∈ D be such that t1 < t2 and take j large enough such that t2 − t1 is a multiple of ∆tj .
Summing (2.17) from t1 + ∆tj to t2 and using (2.18) and (2.11) we obtain

‖∂Ej(s)‖(ϕi(·, s))
∣∣∣s=t2
s=t1
−
ˆ t2−∆tj

t1−∆tj

‖∂Ej(t)‖ (∂tϕi(·, t)) dt

≤
ˆ t2

t1

δ (∂Ej(t), ϕi(·, t))
(
hεj (·, ∂Ej(·, t))

)
) dt+ (t2 − t1)ε

1
8
j .

By the uniform boundedness of the mass and the varifold convergence, we can prove that the limit
of the LHS when i, j →∞ is

‖V (t2)‖(ϕ(·, t2))− ‖V (t1)‖(ϕ(·, t1))−
ˆ t2

t1

‖V (t)‖ (∂tϕ(·, t)) dt.

The second term of the right hand side (RHS) tends to 0. The first term of the RHS converges to

ˆ t2

t1

ˆ
Rn
−ϕ(·, t)|H(·, V (t))|2 +∇ϕ(·, t) ·H(·, V (t)) d‖V (t)‖ dt.

The proof relies on step 2 and estimates from [36, Section 5], we refer the reader to [36, Section 9]
for the details. We deduce by density the Brakke inequality for arbitrary t1 and t2, and this finishes
the proof of step 4.
In our context, the proof of step 4 will be slightly adapted to prove a spacetime Brakke inequality
for the limit flow constructed in this thesis (see the proof of Proposition 5.3.13 for details).

2.2.6 Triviality/non-triviality of the limit flow

A major issue about the Brakke construction is the triviality issue. In fact, even in the simple case
of a sphere, we have no guarantees that the constructed Brakke flow is not trivial.
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Figure 2.4: Triviality of the flow of the line segment.

One of the well-known cases where the instant vanishing of Brakke flows occurs is the case of
embedded non-closed compact curves of R2. We consider the example of a line segment for sim-
plicity: let C be the natural varifold associated to the line segment [−1, 1]. We will prove that
any Brakke flow starting from C is trivial. To do so, consider the sequence of varifolds Cj , j ∈ N
associated to the ellipsoids (see figure 2.4 for illustration)

(1 + j−1)
(
cos(t), j−1 sin(t)

)
, t ∈ [0, 1].

By Theorem 2.1.2 we know that the extinction time of Cj , under the mean curvature flow, tends
to 0 as j tends to ∞. On the other hand, by the avoidance principle of Brakke flows to mean
curvature flows ([35, Theorem 10.5]) we deduce that the Brakke flow of C vanishes immediately.

Kim & Tonegawa showed, mainly using Huisken’s monotonicity formula ([46, Theorem 3.4]), that
their constructed Brakke flow is nontrivial. The proof consists of two steps:

1. The open sets evolve continuously in time.

2. The constructed Brakke flow is equal to the boundary of the evolving open sets.

The nontriviality result is the core of the work of [36]. In the following theorem, the notion of
"open partition" refers to [36, Definition 4.1], i.e. no boundedness condition on the open sets is
imposed.

Theorem 2.2.11. [36, Theorem 1.1] Let E =
N⋃
i=1

Ei be an open partition such that the mass of ∂E is finite

or grows at most exponentially near infinity. There exists a family of open partitions E(t) =
N⋃
i=1

Ei(t) such

that:

1. E(0) = E ,

2. ∂E(t) =
N⋃
i=1

∂Ei(t) is a Brakke flow in the sense of Definition 2.2.1,

3. For any i ∈ {1, . . . , N}, t 7→ Ei(t) evolves continuously with respect to the Lebesgue measure.

In chapter 6, we prove in codimension one a non-triviality property for the flow that we in-
troduce and study in this manuscript. The proof involves an approximate comparison principle
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with respect to evolving spheres. Roughly speaking, if (Vε(t))t∈[0,T ] is the constructed approxi-
mate mean curvature flow, and (B(t))t∈[0,T ] is the flow of balls associated to mean curvature flow
of spheres, we have

‖Vε(t2)‖(B(t2)) ≤ ‖Vε(t1)‖(B(t1)) + ε, where 0 ≤ t1 ≤ t2 ≤ T.

Combining the approximate avoidance principle with the relative isoperimetric inequality allows
us to prove the nontriviality result.
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Chapter 3

Contributions and perspectives

This PhD work adresses the possibility to extend to general data, in particular discrete data such
as point clouds, the notion of mean curvature flow.

Our first contribution is a result of consistency for the flow obtained from a (space) volumetric
discretization of smooth submanifolds flowing by mean curvature.

Our second and main contribution is the construction and the analysis of two new Brakke-type
flows:

1. A time-discrete approximate mean curvature flow depending on a scale of approximation ε
and a subdivision of the time interval;

2. A time-continuous approximate mean curvature flow depending only on ε, constructed as
the limit of the time-discrete flow when the time step tends to 0.

These flows have the interesting and new property (in contrast with the original Brakke’s or Kim
& Tonewaga’s flows) that their construction is valid for fairly general data with compact support:
point clouds, singular surfaces, volumetric varifolds, etc.

We also study the limit as ε → 0 of the time-continuous flow and some properties of the
resulting flow, which under certain conditions is a spacetime Brakke flow.

In what follows, we give a slightly more detailed summary of our results.

3.1 Approximate Brakke equality for a volumetric discretization of mean
curvature flow

We prove in Chapter 4 a consistency result for the mean curvature flow obtained from a space
discretization of a smooth flow. More precisely, we discretize using volumetric varifolds defined
in (1.5) the mean curvature flow of a C3 submanifold of Rn, and we prove the validity of an
approximate Brakke equality for the discretized objects considered with their approximate mean
curvature (see Definition 1.18) that makes more sense in a discrete setting.

Theorem (Thm 4.0.1, Chap 4). LetM be a C3 closed d-submanifold in Rn, letM(t)t∈[0,T ] be its mean
curvature flow (Definition 2.1.1 ), and M(t)t∈[0,T ] the varifolds associated with the familyM(t)t∈[0,T ]. Let
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Kh be a mesh of Rn of size h ∈ (0, 1) and Vh(t) a discretization ofM(t) for every t ∈ [0, T ] (Definition
1.5).
Let ε, γ ∈ (0, 1) be such that h ≤ γ

2ε, and

• γ ≤ (8(1 + C
2/d
0 ))−1, where C0 bounds the Ahlfors regularity constant ofM(t),∀t ∈ [0, T ];

• γ ≤ max
x∈M(t), t∈[0,T ]

(λ(x, t))−1, where λ(x, t) is the maximal principal curvature ofM(t) at x;

• β > γ23dC2
0 (Lip(ξ) + 1), where β = min

{
ξ(s)

∣∣s ∈ [C−2/d
0

4
,
1

2

]}
> 0.

Then, the following estimate holds:∣∣∣‖Vh(t2)‖(ϕ)− ‖Vh(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x, Vh(t))|2 −∇ϕ(x) ·Hε(x, Vh(t))d‖Vh(t)‖(x)dt

∣∣∣
≤ C‖ϕ‖C2

(
max

t∈{t1,t2}
∆(M(t), Vh(t)) + ε(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + (t2 − t1)‖M(0)‖(Rn)(ε+

h

ε3
)

)
,

(3.1)

for every ϕ ∈ C2
c (Rn,R+) , 0 ≤ t1 ≤ t2 ≤ T , where C depends on n, d, γ, β, ‖ρ‖C2 , ‖ξ‖C1 , C0 and other

constants depending on the C3-norm ofM.

3.2 Approximate mean curvature flows of a general varifold, and their
limit spacetime Brakke flow

This section summarizes the main contributions of the thesis on approximate mean curvature
flows that are presented in chapter 5:

1. Starting from any varifold of any codimension and finite mass, we give a definition of a
time-discrete approximate mean curvature flow with respect to a scale of approximation
and a time subdivision.

2. Starting from any varifold of compact support and of arbitrary codimension, we give a def-
inition of an approximate mean curvature flow with respect to a scale of approximation
obtained as a limit of the flow constructed in 1. The constructions 1 and 2 give sense to an
approximate mean curvature flow for general data: point cloud, singular surfaces etc.

3. We introduce the definition of a spacetime Brakke flow. Roughly speaking, it consists of a
generalization of the spacetime track of a Brakke flow. If we denote by (Vε(t))t∈[0,1] the flow
constructed in 2, then limVε(t)⊗dt is a spacetime Brakke flow given its Rn×Gd,n-component
is rectifiable.

We now give a sketchy presentation of our achievements. We keep the same definition of the
approximate mean curvature vector as in [36] (Definition 2.6).

Thanks to :
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• the estimate ‖hε(·, V )‖C1 ≤ c1‖V ‖(Rn)ε−4 for any V ∈ Vd(Rn), ε ∈ (0, 1) and for some
constant c1 depending only on n,

• the fact that the push-forward by the map Id + ∆thε increases the mass at most linearly in
time (this is due to the fact that we approximate a MCF);

one can define a time-discrete approximate mean curvature flow as follows:

Definition (Time-discrete approximate mean curvature flow, Def 5.1.4, Chap 5). Let M ≥ 1, ε ∈
(0, 1) and a ∈ (0, 1]. Consider a subdivision T = {ti}mi=0 of [0, a] (Definition 1.1.1) and assume that

c5δ(T ) ≤ (M + 1)−3ε8 with δ(T ) = max
1≤i≤m

ti − ti−1 . (3.2)

for some constant c5 depending only on n. Let V0 ∈ Vd(Rn) satisfying ‖V0‖(Rn) ≤M . Define (Vε,T (ti))i=0...m
by Vε,T (0) := V0 and, for i = 1, . . . ,m,

Vε,T (ti) := fi#Vε,T (ti−1) with fi = Id + (ti − ti−1)hε(·, Vε,T (ti−1)) .

We then define the family (Vε,T (t))t∈[0,a] by linear interpolation between the points of the subdivision, and
we call it a time-discrete approximate MCF:

Vε,T (t) := [Id + (t− ti)hε(·, Vε,T (ti))]# Vε,T (ti) if t ∈ [ti, ti+1].

(3.2) is a technical condition allowing to define the push-forwards and guaranteeing at each
time that the mass is bounded by M + 1.
The following proposition encompasses the obtained results on the stability of the time-discrete
approximate MCF with respect to the subdivision and the initial datum.

Proposition 3.2.1 (Stability, Prop 5.1.16, Chap 5). Let ε ∈ (0, 1), M > 0. Let V0, W0 be two varifolds in
Vd(Rn) with ‖V0‖(Rn), ‖W0‖(Rn) ≤M . Let T1 = {ti}mi=1 and T2 = {sj}m

′
j=1 be two subdivisions of [0, 1]

satisfying (3.2). Let (Vε,T1(t))t∈[0,1] (resp.(Wε,T2(t))t∈[0,1]) be the discrete approximate MCF with respect
to T1 (resp. T2) starting from V0 (resp. W0).
If we set

δ = max{δ(T1), δ(T2)},

we have

∆(Vε,T1(t),Wε,T2(t)) ≤ ∆(V0,W0) exp
(
tCε−n−7

)
+ Ctδε−n−11 exp

(
tCε−n−7

)
, (3.3)

for all t ∈ [0, 1] where C is a constant depending on M and n.

3.2.1 Approximate mean curvature flow for general varifolds

Thanks to the stability result 3.2.1, we prove that the time-discrete approximate mean curvature
flow converges to a unique limit when the time step tends to 0 (with ε fixed). The next result
summarizes Theorem 5.2.1 and Proposition 5.2.5.
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Theorem (Convergence to approximate MCF, Thm 5.2.1 & Prop. 5.2.5 ). Let ε ∈ (0, 1), M > 0.
Let V0 ∈ Vd(Rn) of bounded support with ‖V0‖(Rn) ≤ M . Let (Tj)j∈N be a sequence of subdivisions of
the interval [0, 1] with step tending to 0 and consider (Vε,Tj (t))t∈[0,1], the discrete approximate MCF with
respect to Tj starting from V0.
Then, as j →∞, Vε,Tj (t) converges on [0, 1] to a unique limit that we denote by Vε(t) and call the approx-
imate MCF of V0.
In addition, Vε(t) satisfies a Brakke equality with respect to hε, i.e.

‖Vε(t2)‖(ϕ(·, t2))− ‖Vε(t1)‖(ϕ(·, t1)) =

ˆ t2

t1

δ(Vε(t), ϕ)(hε(·, Vε(t)))dt+

ˆ t2

t1

ˆ
Rn

d

dt
ϕ(·, t) d‖Vε(t)‖dt

(3.4)
for all ϕ ∈ C1(Rn × [0, 1],R+) and 0 ≤ t1 ≤ t2 ≤ 1.

3.2.2 Spacetime Brakke flows

Before we resume the presentation of our results, we need to introduce some definitions.

Definition (Spacetime first variation and mean curvature, Def. 5.3.1).
Let X ∈ C1(Rn × [0, 1],Rn) and λ be a finite Radon measure on (Rn ×Gd,n × [0, 1]). The spacetime first
variation of λ in the direction X is defined by:

δλ(X) =

ˆ
Rn×Gd,n×[0,1]

divS X(y, t) dλ(y, S, t).

If the functional δλ : C1(Rn × [0, 1],Rn) → R is bounded with respect to ‖ · ‖∞ then by Riesz represen-
tation theorem and Radon-Nikodym decomposition, we can assert the existence of a vector field h(·, ·, λ) in
L1(Rn × [0, 1],Rn, d‖λ‖) such thatˆ

Rn×Gd,n×[0,1]
divS X(y, t) dλ(y, S, t) = −

ˆ
Rn×[0,1]

X(y, t) · h(y, t, λ) d‖λ‖+ (δλ)s(X) (3.5)

∀X ∈ C1(Rn× [0, 1],Rn), where ‖λ‖ = Π#λ, Π being the canonical projection from Rn×Gd,n× [0, 1] to
Rn × [0, 1], and (δλ)s is a vector-valued Radon measure singular with respect to ‖λ‖. The vector h(·, ·, λ)
is called the spacetime mean curvature of λ.

We now introduce the notion of spacetime Brakke flow. One can think of this notion as a
generalized spacetime track of Brakke flows.

Definition (Spacetime Brakke flow, Def 5.3.4, Chap 5). Let λ be a finite Radon measure on Rn×Gd,n×
[0, 1]. λ is called a spacetime Brakke flow if:

(i) There exists (µ(t))t∈[0,1], a family of Radon measures on Rn (we call it the mass measure of λ), and
(ν(x,t))(x,t)∈Rn×[0,1] a family of probability measures such that λ = µ(t)⊗ ν(x,t) ⊗ dt.

(ii) δλ is bounded and (δλ)s = 0.

(iii) (Integral Brakke inequality). For any ϕ ∈ C1
c (Rn × [0, 1],R+), 0 ≤ t1 ≤ t2 ≤ 1 we have

µ(t2)(ϕ(·, t2))−µ(t1)(ϕ(·, t1)) ≤ −
ˆ t2

t1

ˆ
Rn
ϕ(y, t)|h(y, t, λ)|2 dµ(t)(y)dt

+

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇ϕ(y, t)) · h(y, t, λ) dλ(y, S, t) +

ˆ t2

t1

ˆ
Rn
∂tϕ(·, t) dµ(t)dt

(3.6)
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where h(·, ·, λ) is the spacetime mean curvature of λ. We say that λ starts from V0 = µ(0)⊗ ν(x,0).

We prove an interesting property on the limit, stated as follows:

Theorem (Convergence, Thm 5.3.7, Chap 5). Let ε ∈ (0, 1) and V0 ∈ Vd(Rn) with compact support
and finite mass. Let (Vε(t))t∈[0,1] be the approximate mean curvature flow starting from V0. We have:

• There exists a sequence (εj)j −−−→
j→∞

0 such that

Vεj (t)⊗ dt −−−→
j→∞

λ = µ(t)⊗ ν(x,t) ⊗ dt, and ‖Vεj (t)‖ −−−→
j→∞

µ(t),

where µ(t) is a Radon measure on Rn and ν(x,t) a family of probability measures for (x, t) ∈ Rn ×
[0, 1].

• δλ is bounded, (δλ)s = 0 and ‖h(·, ·, λ)‖L2(dλ) ≤ V0(Rn).

• If we assume that µ(t)⊗ ν(x,t) is rectifiable for a.e. t ∈ [0, 1] then λ is a spacetime Brakke flow.

The proof of the first part of the theorem relies on the boundedness in ε of the masses and the
semi-continuity of µ(t). For the second and the third part, we adapt the proof of Kim & Tonegawa
to our context. For technical reasons, the rectifiability assumption is essential to prove the Brakke
inequality.

3.3 An avoidance principle for approximate MCFs and spacetime Brakke
flows, and consequences

This section summarizes the contributions provided in Chapter 6 on avoidance principles satisfied
by approximate mean curvature flows and spacetime Brakke flows. The main achievements we
have obtained are the following:

1. The nontriviality of our constructed flow when the initial datum is the boundary of an open
partition.

2. The avoidance of smooth mean curvature flows by the mass measures of spacetime Brakke
flows. This is a generalisation of [35, Theorem 10.5] which was proved for rectifiable Brakke
varifolds.

The first result is stated rigorously as follows:

Theorem 3.3.1 (Nontriviality, Thm 6.2.9, Chap 6). Let E be an open partition (Definition 2.2.3). Let
ε ∈ (0, 1) and (∂Eε(t))t∈[0,1] be the approximate mean curvature flow starting from ∂E . Let λ be the limit
of ∂Eε(t) ⊗ dt (by any possible extraction). Then λ is non-trivial measure. i.e. if (µ(t))t∈[0,1] is the mass
measure of λ, then µ(t)(Rn) > 0 for a nontrivial time interval.

The proof of Theorem 3.3.1 relies on the approximate comparison principle with respect to
spheres satisfied by the time-discrete approximate mean curvature flows.

The second result is stated rigorously as follows:
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Theorem (Avoidance, Thm 6.4.3, Chap 6). Let (Mt)t∈[0,1] be a mean curvature flow. Let λ be a space-
time Brakke flow and (µ(t))t∈[0,1] be its mass measure. Assume thatM0 and µ(0) have compact support
and codimension 1. We have

sptµ(0) ∩M0 = ∅ =⇒ sptµ(t) ∩Mt = ∅ ∀t ∈ [0, 1].

The proof is a direct adaptation of [35, Theorem 10.5]. According to [35, Definition 10.1], a family
(Ft)t≥0 of closed sets is a set-theoretic subsolution to the mean curvature flow if

M0 ∩ F0 = ∅ =⇒ Mt ∩ Ft = ∅ ∀t ≥ 0

for every compact hypersurface M0, where (Mt)t≥0 is its MCF. Hence, the mass measure of a
spacetime Brakke flow is a set-theoretic subsolution of the mean curvature flow. This implies the
following nice result:

Corollary 3.3.2 (Coincidence with smooth flows, Cor 6.4.5, Chap 6). Let (µ(t))t∈[0,1] be the mass
measure of a spacetime Brakke flow (Definition 5.3.4) starting from V0 ∈ Vn−1(Rn). Assume that V0 is the
varifold associated to a compact hypersurface, and denote by (Mt)t∈[0,1] its mean curvature flow.

1. If sptµ(0) ( spt ‖V0‖, then µ(t) = 0, ∀t > 0.

2. If we assume that µ(s)(Rn) > 0 for some s ∈ (0, 1] then sptµ(t) =Mt, ∀t ∈ [0, s).

3.4 Flows of point clouds

The spacetime Brakke flow of a point cloud varifold is trivial. To see that, we first note that a
point cloud is contained in infinitely many smooth hypersurfaces. Corollary 3.3.2 implies that the
evolution of the point cloud is contained in the MCF of each smooth hypersurface that contains
the point cloud at time t = 0. By the comparison principle, this implies the triviality of the flow.

Consequently, only approximate mean curvature flows can be considered for point clouds. But do
they have a limit as the initial point cloud becomes more and more dense, converging in the limit
to a smooth surface? An example of a point cloud with increasing densities is shown in Figure 3.1.

Figure 3.1: Point cloud approximations of a surface with increasing densities. If approximate
mean curvature flows are computed starting from each point cloud in a collection with increasing
resolutions, what can be said about the limit mean curvature flow in the limit of resolution?
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We provide below an explicit construction of our time-discrete approximate mean curvature flow
in the case of point cloud varifolds. We also synthesize what can be deduced for point clouds,
in particular when they approximate a smooth surface, from the general consistency properties
proved in Chapter 5. Then, we recall the definition of the approximate mean curvature flow of
point cloud varifolds proposed in [17]. Finally, we make a comparison between the two flows.

3.4.1 An explicit scheme for the time-discrete approximate MCF of a point cloud

A time-discrete ε-approximate flow of a point cloud can be easily derived from Definition 3.2 as an

explicit scheme. Let V =
N∑
j=1

mjδxj ⊗ δPj be a point cloud varifold. Let ε ∈ (0, 1) and T = {ti}mi=1

be such that c5δ(T )(‖V ‖(Rn) + 1)3 ≤ ε8, and set

Vε,T (0) =

N∑
j=1

mj(0)δxj(0) ⊗ δPj(0) = V.

The time-discrete approximate flow starting from Vε,T (0) is defined inductively as

Vε,T (ti) =
N∑
j=1

mj(ti)δxj(ti) ⊗ δPj(ti) ∀i ∈ {1, . . . ,m}

with

• xj(ti+1) = (id + (ti+1 − ti)hε)(xj(ti)).

• mj(ti+1) =
(
JPj(ti)(id + (ti+1 − ti)hε)(xj(ti))

)
mj(ti),

• Pj(ti+1) =
(
D(id + (ti+1 − ti)hε)(xj(ti))

)
(Pj(ti)) .

Implementing and testing practically this flow on real point clouds is the purpose of future work.

3.4.2 Converging point clouds and limits of their approximate MCFs

Let (Wk)k be a sequence of point cloud varifolds converging to a varifold V0 ∈ Vn−1(Rn) asso-
ciated with a C2 hypersurface M. Let (Tk)k be a sequence of subdivisions of [0, 1]. We choose
(εk)k, (δ(Tk))k ∈ (0, 1) such that

∆(V0,Wk) exp
(
Cε−n−7

k

)
+ Cδ(Tk)ε−n−11 exp

(
Cε−n−7

k

)
−−−→
k→∞

0.

We consider for every k ∈ N the time-discrete approximate MCF ((Wk)εk,Tk(t))t∈[0,1] starting from
the point cloud Wk. Thanks to Proposition 3.2.1, Theorem 3.3.1 and Corollary 3.3.2, we can char-
acterize the limit of these approximate mean curvature flows:

1. (Wk)εk,Tk(t)⊗ dt converges to a non-trivial measure λ such that

λ = µ(t)⊗ ν(x,t) ⊗ dt

where (µ(t))t∈[0,1] is a collection of Radon measures on Rn, ν(x,t) is a collection of probability
measures on Gd,n, and µ(0)⊗ ν(x,0) = V0.
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2. If we assume µ(t) ⊗ ν(x,t) to be rectifiable for a.e. t ∈ [0, 1], then λ is a spacetime Brakke
flow. Moreover, denoting as (Mt)t≥0 the mean curvature flow starting fromM, we prove
that sptµ(t) =Mt on a non-trivial time interval.

3.4.3 Another construction: the Buet-Rumpf approximate mean curvature flow

The motion of point clouds by their approximate mean curvature is defined in [17] as follows:

given a point cloud d-varifold V =
N∑
i=1

miδ(xi,Pi) in Rn, a continuous motion of point cloud vari-

folds by approximate mean curvature flow starting from V is a family of varifolds (V (t))t≥0 with
V (0) = V and:

V (t) =
N∑
i=1

mi(t)δ(xi(t),Pi(t)) and X(t) = (x1(t) . . . xN (t)) ∈ RnN

such that
d

dt
xi(t) = Hε(xi(t), V (t)). (3.7)

If the masses and the tangents are Lipschitz functions of the positions, the existence of the motion
for at least a small time interval is guaranteed by Cauchy-Lipschitz theorem. For numerical simu-

lations the masses are defined by either formula mi = 1 or mi =
εd∑

j
η
(
|xi−xj |

ε

) for some positive

function η supported on [0, 1]. As for the tangents, they are defined via regression.

Two time discretizations of Equation (3.7), an implicit and an explicit ones, are proposed in
[17] . If τ > 0 denotes the time step, the implicit scheme (implicit with respect to the positions) is
defined as:

xk+1
i = xki + τHε

(
xk+1
i , V

)
(3.8)

where

V =

N∑
j=1

mk
i δ(xk+1

i ,Pki ),

and Xk :=
(
xk1, . . . , x

k
N

)
∈ RnN being the positions at time tk := kτ .

3.4.4 Comparison of the two approaches

Numerical schemes are proposed in [17] for the above mean curvature flow, they are flexible,
easy to implement and give satisfactory numerical results. A drawback of the approach proposed
in [17] is that stability or convergence results (as the time step decreases and the density of the
point cloud increases) seem to be hardly reachable, and possibly not true. In contrast, the method
we propose is based on a significantly more difficult construction, but stability and convergence
results can be proved due to the more rigid definitions of masses and tangent planes.
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3.5 Further comments on our construction

Weak MCFs constructed in [22, 18, 35] (and some others) coincide with the classical mean curva-
ture flow in codimension 1 as long as the latter exists. These approaches use the MCF equation
to construct approximate solutions and rely on the theory of PDEs to prove convergence and con-
sistency in the C2 case. The approximate flow in our construction satisfies the approximate mean
curvature flow equation only in the weak sense (approximate Brakke equality). Hence, we do not
have strong estimates coming from PDE theory to prove the consistency. We recall that we choose
to work with a weak PDE instead of the strong one in order to include various types of varifolds,
such as point clouds and singular submanifolds .

3.6 Research perspectives

In a work in progress, we are addressing the following questions:

• (Coincidence with smooth flows) Let M be a compact C2 (n − 1)-submanifold of Rn and
(Mt)t≥0 its mean curvature flow. Let µ(t) be the mass measure of a spacetime Brakke flow
starting fromM. We prove in this manuscript that if µ(s)(Rn) > 0 for some s then sptµ(t) =
Mt for any t ∈ [0, s). Can we prove that µ(t) = Hd|Mt

for a.e. t ∈ [0, s)?

• (Rectifiability of V (t)) If λ is a limit of Vε(t)⊗dt, we proved that λ is a spacetime Brakke flow
given that its Rn×Gd,n-component is rectifiable. Can we prove that the Rn×Gd,n-component
is rectifiable given that the initial datum is rectifiable?

• (Nontriviality) We prove in this work that our constructed flow is nontrivial when the initial
datum is a boundary of an open partition. Does the nontriviality of our constructed flow for
C2 surfaces still hold in higher codimension?

• (Disintegration) If V (t) is a Brakke flow then V (t)⊗dt is a spacetime Brakke flow. Conversely,
a spacetime Brakke flow can always be desintegrated as V (t)⊗ dt. But is it always true that
V (t) is a Brakke flow?

• (Dimension mismatch) Consider a d-varifold whose mass is exactly supported on am-rectifiable
set with d 6= m. Even in this context where there is a mismatch between the dimension of
the support and the dimension of the tangent space, our construction still holds. But what
kind of evolution is it? Can we say more?

• (Density change) We know by the avoidance principle that if we start from aC2 submanifold
with non-constant density, the support of its flow coincides with the support of the evolution
with constant density. What can be said about the density evolution in time? Even in the
case of spheres, the answer is not clear to us.

• (Numerical simulations) Based on the discussion of section 3.4.1, it would be interesting to
simulate numerically the approximate mean curvature flow of various initial data.
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Chapter 4

Approximate Brakke equality for a
volumetric discretization of mean
curvature flow

The goal of this chapter is to show a consistency result on the mean curvature flow evolution via
space-discretization by volumetric varifolds as in (1.5).
Consider a C3 closed submanifoldM of Rn and (M(t))t∈[0,T ], T > 0 the mean curvature flow of
M on [0, T ] (Definition 2.1.1). Let Kh be a mesh of Rn of size h ∈ (0, 1) and Vh(t) a discretization
ofM(t) for every t ∈ [0, T ]. The work consists of showing a Brakke approximate equality for the
discretization with respect to its approximate mean curvatureHε(·, Vh(t)). The error term depends
on ε, h,M and the kernels ρ and ξ involved in the definition of the approximate mean curvature
(1.18).

We deal with an approximate mean curvature vector of the discretization Vh(t)t∈[0,T ] since it
makes more sense in the discrete setting. We consider the submanifold M of regularity C3 and
not only C2 in order to have Lemma 4.0.4. The approximate mean curvature Hε(·, ·) we use in this
chapter is defined in (1.18), where we set Cρ = Cξ = 1 for simplicity.

The mass decay property of the mean curvature flow is an important tool, heavily used in this
chapter. For a family of varifolds (M(t))t∈[0,T ] associated to a mean curvature flow we have

‖M(t)‖(Rn) ≤ ‖M(0)‖(Rn), ∀t ∈ [0, T ], (4.1)

it stems from (2.3) for ϕ ≡ 1.

The following result forms the core of this chapter. We stress that the result concerns the error on
the Brakke equality that results from space discretization, that it does not concern neither the error
of time discretization nor the stability of the discretization scheme.

Theorem 4.0.1. Let M be a C3 closed d-submanifold in Rn, M(t)t∈[0,T ] be its mean curvature flow
(Definition 2.1.1). Let M(t)t∈[0,T ] be the varifolds associated with the familyM(t)t∈[0,T ]. LetKh be a mesh
of Rn of size h and Vh(t) a discretization ofM(t) for every t ∈ [0, T ] (Definition (1.5)).
Then, there exist two constants γ ∈ (0, 1) and C (whose dependence is discussed in Remark 4.0.2), such
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that, for all h, ε ∈ (0, 1) satisfying h ≤ γ
2ε,∣∣∣‖Vh(t2)‖(ϕ)− ‖Vh(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x, Vh(t))|2 −∇ϕ(x) ·Hε(x, Vh(t)) d‖Vh(t)‖(x)dt

∣∣∣
≤ C‖ϕ‖C2

(
max

t∈{t1,t2}
∆(M(t), Vh(t)) + ε(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + (t2 − t1)‖M(0)‖(Rn)(ε+

h

ε3
)

)
,

(4.2)

for every ϕ ∈ C2
c (Rn,R+) , 0 ≤ t1 ≤ t2 ≤ T .

Remark 4.0.2. The constant γ in Theorem 4.0.1 satisfies:

• γ ≤ (8(1 + C
2/d
0 ))−1, where C0 bounds the Ahlfors regularity constant of M(t) for all

t ∈ [0, T ];

• γ ≤ max
x∈M(t), t∈[0,T ]

(λ(x, t))−1, where λ(x, t) is the maximal principal curvature ofM(t) at x;

• β > γ23dC2
0 (Lip(ξ) + 1), where β = min

{
ξ(s)

∣∣s ∈ [C−2/d
0

4
,
1

2

]}
> 0.

The constant C in Theorem 4.0.1 depends on n, d, γ, β, ‖ρ‖C2 , ‖ξ‖C1 , C0, C1 (defined in Lemma
4.0.4) and C2, where C2 bounds the Lipschitz constants of the maps y 7→ TyM(t), ∀t ∈ [0, T ].

Remark 4.0.3. If we ignore the smallness of the right-hand side of (4.2) with respect to |t1− t2|we
obtain a weaker (but simpler) estimate:∣∣∣‖Vh(t2)‖(ϕ)− ‖Vh(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x, Vh(t))|2 −∇ϕ(x) ·Hε(x, Vh(t)) d‖Vh(t)‖(x)dt

∣∣∣
≤ ‖ϕ‖C2C ′

(
ε+

h

ε3

)
, ∀ϕ ∈ C2

c (Rn,R+), where C ′ = C (3‖M(0)‖(Rn) + T ) .

where we used: ∆(‖M(t)‖, ‖Vh(t)‖) ≤ h‖M(t)‖(Rn) (1.6) and ‖M(t)‖(Rn) ≤ ‖M(0)‖(Rn), ∀t ∈
[0, T ] (4.1).

The following is an approximation result concerning the approximate mean curvature, it stems
from [17, Proposition 3.3] (see also [15, Paragraph 5]).

Lemma 4.0.4. Let ε ∈ (0, 1), letM C3 closed d-submanifold of Rn and M its associated varifold. There
exists a constant C1 depending on the C3− norm ofM (seen locally as a graph over its tangent space) and
uniform onM such that: for any x ∈M,∣∣H(x,M)−Hε(x,M)

∣∣ ≤ C1ε.

Remark 4.0.5. The mean curvature flow is continuous with respect to theC3-distance on the space
of submanifolds, the fact that [0, T ] is compact allows to choose C1 uniformly in t, i.e.∣∣H(x,M(t))−Hε(x,M(t))

∣∣ ≤ C1ε, ∀t ∈ [0, T ],∀x ∈M(t), (4.3)

for (M(t))t∈[0,T ] being the varifolds associated to the mean curvature flow (M(t))t∈[0,T ].
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Remark 4.0.6. We note that in the original statement of Lemma 4.0.4, the kernels ρ and ξ are
supposed to form a natural kernel pair, i.e. they must satisfy the relation: −nξ(r) = rρ′(r) for all
r ∈ [0, 1]. Looking carefully at the proof, we realize that this assumption on the pair of kernels is
not necessary for this particular statement.

Sketch of the proof of Theorem 4.0.1: The starting point is the following equality satisfied by
mean curvature flows. Let (M(t))t∈[0,T ] be the varifolds associated with a mean curvature flow.
We deduce from (2.3) (considering the orthogonality of the mean curvature) that

‖M(t2)‖ (ϕ)− ‖M(t1)‖ (ϕ) +

ˆ t2

t1

ˆ
M(t)

ϕ(y)|H(y,M(t))|2 dHd(y)dt

−
ˆ t2

t1

ˆ
M(t)
∇ϕ(y) ·H(y,M(t)) dHd(y)dt = 0,

(4.4)

for any ϕ ∈ C1
c (Rn,R+) and 0 ≤ t1 ≤ t2 ≤ T . Then we measure the error made when, in (4.4),

• H(·,M(t)) is replaced with Hε(·,M(t)) (Lemma 4.0.7),

• M(t) is replaced with Vh(t) (Lemma 4.0.9 and final part of the proof),

and the result ensues.

Let us now see the proof in detail. We first use Lemma 4.0.4 to prove the following result.

Lemma 4.0.7. Let ε ∈ (0, 1). LetM be a C3 closed d-submanifold andM(t)t∈[0,T ] be the mean curvature
flow ofM. Let M(t)t∈[0,T ] be the varifolds associated toM(t)t∈[0,T ]. We have

∣∣∣‖M(t2)‖(ϕ)− ‖M(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x,M(t))|2 −∇ϕ(x) ·Hε(x,M(t)) d‖M(t)‖(x)dt

∣∣∣
≤ ‖ϕ‖C1C̃1ε (‖M(t1)‖(Rn)− ‖M(t2)‖(Rn) + (t2 − t1)‖M(0)‖(Rn)) ,

(4.5)

for any 0 ≤ t1 ≤ t2 ≤ T and ϕ ∈ C1
c (Rn,R+), where C̃1 = C1(2 + C1).

Proof. Let t1, t2 ∈ [0, T ] be such that 0 ≤ t1 ≤ t2 ≤ T , let ϕ ∈ C1
c (Rn,R+). We have by (4.3)

∣∣ˆ t2

t1

ˆ
Rn
∇ϕ(x) ·H(x,M(t))d‖M(t)‖(x)dt−

ˆ t2

t1

ˆ
Rn
∇ϕ(x) ·Hε(x,M(t))d‖M(t)‖(x) dt

∣∣
≤ ‖∇ϕ‖∞

ˆ t2

t1

ˆ
Rn

∣∣H(x,M(t))−Hε(x,M(t))
∣∣ d‖M(t)‖(x) dt

≤ ‖∇ϕ‖∞C1ε

ˆ t2

t1

ˆ
Rn
d‖M(t)‖(x) dt ≤ ‖∇ϕ‖∞C1‖M(0)‖(Rn)(t2 − t1)ε,

(4.6)

where we used ‖M(t)‖(Rn) ≤ ‖M(0)‖(Rn),∀t ∈ [0, T ] (4.1). Also, by (4.3)∣∣∣|H(x,M(t))|2 − |Hε(x,M(t))|2
∣∣∣ ≤ C1ε

∣∣∣|H(x,M(t))|+ |Hε(x,M(t))|
∣∣∣ ≤ C1ε (2|H(x,M(t))|+ C1ε) ,
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so that, using (4.1)∣∣∣ ˆ t2

t1

ˆ
Rn
ϕ(x)|H(x,M(t))|2 d‖M(t)‖(x)dt−

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x,M(t))|2 d‖M(t)‖(x)dt

∣∣∣
≤
ˆ t2

t1

ˆ
Rn

∣∣ϕ(x)|H(x,M(t))|2 − ϕ(x)|Hε(x,M(t))|2
∣∣d‖M(t)‖(x)dt

≤ ‖ϕ‖∞2C1ε

ˆ t2

t1

ˆ
Rn

∣∣H(x,M(t))
∣∣ d‖M(t)‖(x)dt+ ‖ϕ‖∞(C1ε)

2

ˆ t2

t1

ˆ
Rn

d‖M(t)‖(x)dt

≤ ‖ϕ‖∞2C1ε

ˆ t2

t1

ˆ
Rn

∣∣H(x,M(t))
∣∣ d‖M(t)‖(x)dt+ ‖ϕ‖∞(C1ε)

2‖M(0)‖(Rn)(t2 − t1).

For the first term, using (4.4) with ϕ ≡ 1 and the inequality ab ≤ a2 + b2

ˆ t2

t1

ˆ
Rn

∣∣H(x,M(t))
∣∣ d‖M(t)‖(x)dt ≤

ˆ t2

t1

ˆ
Rn

(∣∣H(x,M(t))
∣∣2 + 1

)
d‖M(t)‖(x)dt

≤ (‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + (t2 − t1)‖M(0)‖(Rn).

It yields, as ε ≤ 1∣∣∣ ˆ t2

t1

ˆ
Rn
ϕ(x)|H(x,M(t))|2d‖M(t)‖(x)dt−

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x,M(t))|2 d‖M(t)‖(x)dt

∣∣∣
≤ ‖ϕ‖∞2C1ε

(
(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + (t2 − t1)‖M(0)‖(Rn) + C1‖M(0)‖(Rn)(t2 − t1)

)
.

(4.7)

Finally, we deduce from (4.4), (4.6) and (4.7) that:∣∣∣‖M(t2)‖(ϕ)− ‖M(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x,M(t))|2 −∇ϕ(x) ·Hε(x,M(t)) d‖M(t)‖(x)dt

∣∣∣
≤ ‖ϕ‖∞2C1ε(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + ‖ϕ‖C1ε‖M(0)‖(Rn)2C1(2 + C1)(t2 − t1)

≤ ‖ϕ‖C1C̃1ε (‖M(t1)‖(Rn)− ‖M(t2)‖(Rn) + (t2 − t1)‖M(0)‖(Rn)) ,

where C̃1 = 2C1(2 + C1). This concludes the proof of Lemma 4.0.7.

In the following lemma, we bound the C0,1-norm of Hε(·, V ) for V ∈ Vd(Rn) Ahlfors regular;
the proof is inspired from [17, Proposition 4.6].

Lemma 4.0.8. Let V be a d-Ahlfors regular varifold in Rn with Ahlfors constant C0. Let ε, γ ∈ (0, 1) with
γ ≤ (8(1 + C

2/d
0 ))−1, we have:

max
spt ‖V ‖γε

|Hε(·, V )| ≤ c5ε
−1, Lip

spt ‖V ‖γε
(Hε(·, V )) ≤ c5ε

−2,

where c5 is a constant that depends only on ρ, ξ, C0 and d.

Proof. We start with max
spt ‖V ‖γε

|Hε(·, V )|, we first prove that there exists a constant c7 such that:

εn‖V ‖ ∗ ξε(z) ≥ c7ε
d ∀z ∈ spt ‖V ‖γε.

50



Denote

β = min
{
ξ(s)

∣∣s ∈ [C−2/d
0

4
,
1

2

]}
> 0.

Let z ∈ spt ‖V ‖γε, let x ∈ spt ‖V ‖ be such that |x− z| ≤ γε, we write

εn‖V ‖ ∗ ξε(z) =

ˆ
Rn
ξ

(
|y − z|
ε

)
d‖V ‖(y)

≥ β
(
‖V ‖(B(z,

ε

2
))− ‖V ‖(B(z, C

−2/d
0

ε

4
))
)

≥ β
(
‖V ‖

(
B(x,

ε

2
− |x− z|)

)
− ‖V ‖

(
B(x,C

−2/d
0

ε

4
+ |x− z|)

))
using the Ahlfors property

≥ β
(
C−1

0

(ε
2
− |x− z|

)d
− C0

(
C
−2/d
0

ε

4
+ |x− z|

)d)
≥ βC−1

0 2−d
(

(ε− 2|x− z|)d − (
ε

2
+ 2C

2/d
0 |x− z|)

d
)

≥ βC−1
0 2−d

(
(ε− 2γε)d − (

ε

2
+ 2C

2/d
0 γε)d

)
≥ βC−1

0 2−dεd
(

(1− 2γ)d − (
1

2
+ 2C

2/d
0 γ)d

)
using "ad − bd ≥ (a− b)ad−1 when a ≥ b ≥ 0" we obtain:

≥ βC−1
0 2−dεd

(
(
1

2
− 2γ(1 + C

2/d
0 ))(1− 2γ)d−1

)
≥ βC−1

0 2−dεd
(

1

2

)d+1

≥ βC−1
0 2−2d−1εd,

thus,
εn‖V ‖ ∗ ξε(z) ≥ c7ε

d, (4.8)

with c7 = βC−1
0 2−2d−1.

Now, let z ∈ spt ‖V ‖γε, let x ∈ spt ‖V ‖ be such that |x− z| ≤ γε, we have by the Ahlfors regularity
of V ∣∣εn(δV ∗ ρε)(z)

∣∣ =
∣∣ ˆ

Rn
S(∇ρε(z − y))dV (y, S)

∣∣ ≤ ε−1‖ρ′‖∞‖V ‖ (B(z, ε))

≤ ε−1‖ρ′‖∞‖V ‖ (B(x, 2ε)) ≤ ε−1‖ρ′‖∞C0(2ε)d = 2d‖ρ′‖∞C0ε
d−1.

Thus, for any z ∈ spt ‖V ‖γε, ∣∣εn(δV ∗ ρε)(z)
∣∣ ≤ 2d‖ρ′‖∞C0ε

d−1.

Consequently,

max
z∈spt ‖V ‖γε

|Hε(z, V )| = max
z∈spt ‖V ‖γε

|(δV ∗ ρε)(z)|
|(‖V ‖ ∗ ξε)(z)|

≤ β−1C2
023d+1‖ρ′‖∞ε−1 ≤ c5ε

−1,

with c5 ≥ β−1C2
023d+1‖ρ‖C2 , we conclude the proof of the first part of our lemma.
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We now deal with Lip
spt ‖V ‖γε

Hε(·, V ). For any x, z ∈ spt ‖V ‖γε, we have by the Ahlfors regular-

ity of V

εn
∣∣‖V ‖ ∗ ξε(z)− ‖V ‖ ∗ ξε(x)

∣∣ =
∣∣∣ˆ

Rn
ξ

(
z − y
ε

)
d‖V ‖(y)−

ˆ
Rn
ξ

(
x− y
ε

)
d‖V ‖(y)

∣∣∣
≤ |x− z|ε−1‖ξ′‖∞‖V ‖ (B(x, ε) ∪B(z, ε))

≤ |x− z|ε−1‖ξ′‖∞‖V ‖
(
B(x′, 2ε) ∪B(z′, 2ε)

)
for some x′, z′ ∈ spt ‖V ‖

≤ |x− z|ε−1‖ξ′‖∞
(

2C0(2ε)d
)
≤ 2d+1C0‖ξ′‖∞|x− z|εd−1.

(4.9)

Similar computations give

εn
∣∣δV ∗ ρε(z)− δV ∗ ρε(x)

∣∣ ≤ 2d+1C0‖ρ′′‖∞|x− z|εd−2, (4.10)

therefore,∣∣∣Hε(z, V )−Hε(x, V )
∣∣∣ =

∣∣∣ δV ∗ ρε(z)‖V ‖ ∗ ξε(z)
− δV ∗ ρε(x)

‖V ‖ ∗ ξε(x)

∣∣∣
≤
∣∣δV ∗ ρε(z)− δV ∗ ρε(x)

∣∣
‖V ‖ ∗ ξε(z)

+ |δV ∗ ρε(x)|
∣∣∣ 1

‖V ‖ ∗ ξε(z)
− 1

‖V ‖ ∗ ξε(x)

∣∣∣.
On the one hand, (4.10) and (4.8) imply∣∣δV ∗ ρε(z)− δV ∗ ρε(x)

∣∣
‖V ‖ ∗ ξε(z)

≤ 2d+1C0‖ρ′′‖∞|x− z|εd−2

εn‖V ‖ ∗ ξε(z)

≤ 2d+1C0‖ρ′′‖∞|x− z|εd−2

βC−1
0 2−2d−1εd

≤ β−1C2
023d+1‖ρ′‖∞|x− z|ε−2.

On the other hand, (4.9) and (4.8) imply

|δV ∗ ρε(x)|
∣∣∣ 1

‖V ‖ ∗ ξε(z)
− 1

‖V ‖ ∗ ξε(x)

∣∣∣ ≤ ε−n2d‖ρ′‖∞C0ε
d−1
∣∣∣‖V ‖ ∗ ξε(z)− ‖V ‖ ∗ ξε(x)

‖V ‖ ∗ ξε(z)‖V ‖ ∗ ξε(x)

∣∣∣
≤ 2d‖ρ′‖∞C0ε

d−1 2d+1C0‖ξ′‖∞|x− z|εd−1

ε2n‖V ‖ ∗ ξε(z)‖V ‖ ∗ ξε(x)

≤ 2d‖ρ′‖∞C0ε
d−1 2d+1C0‖ξ′‖∞|x− z|εd−1

βC−1
0 2−2d−1εdβC−1

0 2−2d−1εd

≤ 26d+3C4
0β
−2‖ρ′‖∞‖ξ′‖∞|x− z|ε−2.

In conclusion,
Lip

spt ‖V ‖γε
Hε(·, V ) ≤ c5ε

−2,

for c5 = β−1C2
023d+1‖ρ‖C2

(
1 + β−1C2

023d+2‖ξ′‖∞
)
, and this concludes the proof of Lemma 4.0.8.
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We now substituteM(t) with Vh(t) in (4.4) and estimate the resulting error. We consider a fixed
t ∈ [0, T ] and temporarily drop time dependence.

Lemma 4.0.9. LetM be a closed C2 d-submanifold of Rn and M ∈ Vd(Rn) its associated varifold. Let
h ∈ (0, 1), Kh be a mesh of Rn of size h and Vh be a volumetric discretization ofM of parameter h (defined
in 1.5).
Let ε, γ ∈ (0, 1) be such that 2h ≤ γε, and

• γ ≤ max
x∈M

λ(x)−1, where λ(x) is the maximal principal curvature ofM at x;

• γ ≤ (8(1 + C
d/2
0 ))−1, where C0 is the Ahlfors regularity constant of M ;

• β > γ23dC2
0 (Lip(ξ) + 1), where β = min

{
ξ(s)

∣∣s ∈ [C−2/d
0

4
,
1

2

]}
> 0.

Given V ∈ Vd(Rn), ε ∈ (0, 1), x ∈ Rn and ϕ ∈ C2
c (Rn,R+), we use the notation:

ϕε(x, V ) := −ϕ(x)|Hε(x, V )|2 +∇ϕ(x) ·Hε(x, V ). (4.11)

Then, ∣∣∣ ˆ
Rn
ϕε(·,M) d‖M‖ −

ˆ
Rn
ϕε(·,M) d‖Vh‖

∣∣∣ ≤ c4‖ϕ‖C2‖M‖(Rn)
h

ε3
, (4.12)

and ∣∣∣ ˆ
Rn
ϕε(·,M)d‖Vh‖ −

ˆ
Rn
ϕε(·, Vh)d‖Vh‖

∣∣∣ ≤ c8‖ϕ‖C1‖M‖(Rn)
h

ε3
, (4.13)

where c4 only depends on ρ, ξ, C0, d and c5 from Lemma 4.0.8; c8 is defined in (4.22).

Proof. We start with the proof of 4.12. By Lemma 1.3.3, we have:∣∣∣ ˆ
Rn
ϕε(·,M)d‖M‖−

ˆ
Rn
ϕε(·,M)d‖Vh‖

∣∣∣ ≤ Lip
Rn

(ϕε(·,M))∆(‖M‖, ‖Vh‖) ≤ hLip
Rn

(ϕε(·,M))‖M‖(Rn).

Note that on the boundary ofMε, the quantity ‖M‖ ∗ ξε might tend to 0 faster than δM ∗ ρε, this
would make the norm of Hε(·,M) explode, so does Lipϕε(·,M). As both M and spt ‖Vh‖ are
included in Mh, we will introduce a cut-off function to measure the difference only on a small
neighborhood containingMh. As 2h ≤ γε, we haveMh ⊂Mγε and we define ψ as follows:

ψ(x) =

{
1 if x ∈Mh,
0 if x ∈ Rn \Mγε.

Note that Lip(ψ) ≤ 1
γε−h ≤

2
γ ε
−1 since 2h ≤ γε. Plugging the cut-off function into the expression,

using (1.6) we obtain∣∣∣ ˆ
Rn
ϕε(·,M) d‖M‖ −

ˆ
Rn
ϕε(·,M) d‖Vh‖

∣∣∣ =
∣∣∣ ˆ

Rn
ψϕε(·,M) d‖M‖ −

ˆ
Rn
ψϕε(·,M) d‖Vh‖

∣∣∣
≤ hLip(ψϕε(·,M))‖M‖(Rn).

(4.14)

As Lip(ψ) ≤ 2
γ ε
−1 (temporarily the dependence of ϕε and Hε on M in the notations), we have

Lip(ψϕε) ≤ (max |ψ|) Lip
Mγε

ϕε + (Lipψ) max
Mγε
|ϕε| ≤ Lip

Mγε
ϕε +

2

γ
ε−1 max

Mγε
|ϕε| (4.15)
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and recalling (4.11) and Lemma 4.0.8,

max
Mγε

ϕε ≤ maxϕ(max
Mγε
|Hε|2) + max∇ϕmax

Mγε
|Hε| ≤ c5ε

−1‖ϕ‖C1
(
1 + c5ε

−1
)

(4.16)

and

Lip
Mγε

ϕε ≤ Lipϕ(max
Mγε
|Hε|)2 + maxϕ(Lip

Mγε
|Hε|2) + Lip(∇ϕ) max

Mγε
|Hε|+ max(|∇ϕ|)(Lip

Mγε
Hε),

using Lip
Mγε

(|Hε|2) ≤ 2 max
Mγε
|Hε| Lip

Mγε
(Hε) we obtain

Lip
Mγε

ϕε ≤ ‖∇ϕ‖∞c2
5ε
−2 + ‖ϕ‖∞2c2

5ε
−1ε−2 + ‖∇2ϕ‖∞c5ε

−1 + ‖∇ϕ‖∞c5ε
−2. (4.17)

From (4.15), (4.16) and (4.17), using γ ≤ 1, we obtain

Lip(ψϕε(·,M)) ≤ ‖ϕ‖C2ε−32(1 + γ−1)
(
c2

5 + c5

)
.

Finally, (4.14) yields,∣∣∣ ˆ
Rn
ϕε(·,M)d‖M‖ −

ˆ
Rn
ϕε(·,M)d‖Vh‖

∣∣∣ ≤ c4‖ϕ‖C2‖M‖(Rn)
h

ε3

where c4 = 2(1 + γ−1)
(
c2

5 + c5

)
, this concludes the proof of (4.12).

We now prove (4.13). We start by estimating:
∣∣Hε(z,M)−Hε(z, Vh)

∣∣ onMh. To do so, let z ∈Mh

and x ∈ M be such that |x − z| ≤ h, we have by [15, Lemma 4.4] with B = B(x, ε + |x − z|) and
using that ξε is ε−n−1 Lip(ξ)-Lipschitz,

εn‖Vh‖ ∗ ξε(z) + ε−1 Lip(ξ) (∆B(‖M‖, ‖Vh‖) + |x− z|‖M‖(B)) ≥ εn‖M‖ ∗ ξε(x).

From Lemma 1.3.3, we have for ϕ ∈ C0,1(B,R) ,
∣∣‖M‖(ϕ)− ‖Vh‖(ϕ)

∣∣ ≤ hLip
B

(ϕ)‖M‖(B), hence

∆B(‖M‖, ‖Vh‖) ≤ h‖M‖(B),

so that, using (4.8) (with V = M ) we obtain since 2h ≤ γε

εn‖Vh‖ ∗ ξε(z) ≥ −ε−1 Lip(ξ) (2h‖M‖(B)) + c7ε
d

≥ −γ Lip(ξ)‖M‖(B) + βC−1
0 2−2d−1εd

≥ −γ Lip(ξ)C0(2ε)d + βC−1
0 2−2d−1εd

≥ εd(−γ Lip(ξ)C02d + βC−1
0 2−2d−1).

Thus, as γ satisfies β > γC2
023d+1 Lip(ξ), we obtain:

εn‖Vh‖ ∗ ξε(z) ≥ c9ε
d (4.18)

where c9 = β − γC2
023d+1 Lip(ξ). Now we write∣∣Hε(z,M)−Hε(z, Vh)

∣∣ =
∣∣∣ δM ∗ ρε(z)‖M‖ ∗ ξε(z)

− δVh ∗ ρε(z)
‖Vh‖ ∗ ξε(z)

∣∣∣
≤ |δM ∗ ρε(z)|

∣∣∣ 1

‖M‖ ∗ ξε(z)
− 1

‖Vh‖ ∗ ξε(z)

∣∣∣+

∣∣δM ∗ ρε(z)− δVh ∗ ρε(z)∣∣
‖Vh‖ ∗ ξε(z)

.
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On the one hand, we have from (1.6), (4.8) (with V = M ), (4.18) and the Ahlfors property ofM

|δM ∗ ρε(z)|
∣∣∣ 1

‖M‖ ∗ ξε(z)
− 1

‖Vh‖ ∗ ξε(z)

∣∣∣ = |δM ∗ ρε(z)|
∣∣∣‖M‖ ∗ ξε(z)− ‖Vh‖ ∗ ξε(z)‖M‖ ∗ ξε(z)‖Vh‖ ∗ ξε(z)

∣∣∣
≤ ε−1‖ρ′‖∞‖M‖(B)

h‖ξ′‖∞‖M‖(B)

ε2n‖M‖ ∗ ξε(z)‖Vh‖ ∗ ξε(z)

≤ ε−1‖ρ′‖∞‖ξ′‖∞C02dεdhC02dεd

c7εdc9εd

≤ h

ε

‖ρ′‖∞‖ξ′‖∞22dC2
0

c7c9
.

On the other hand, we have from (1.7), if we denote by C2 the Lipschitz constant of the map
x ∈M 7→ TxM, we have

εn
∣∣∣δM ∗ ρε(z)− δVh ∗ ρε(z)∣∣∣ =

∣∣∣ ˆ
Rn
S (∇ρε(y − z)) dM(y, S)−

ˆ
Rn
S (∇ρε(y − z)) dVh(y, S)

∣∣∣
≤ Lip(Θ)h(1 + 2C2)‖M‖(B)

(4.19)

where Θ : Rn ×Gd,n → Rn, (y, S) 7→ S (∇ρε(y − z)), we know that Lip(Θ) ≤ ε−2‖ρ‖C2 , so that

εn
∣∣∣δM ∗ ρε(z)− δVh ∗ ρε(z)∣∣∣ ≤ ε−2‖ρ‖C2h(1 + 2C2)‖M‖(B).

Next, using (4.19), (4.18) and the Ahlfors property ofM∣∣δM ∗ ρε(z)− δVh ∗ ρε(z)∣∣
‖Vh‖ ∗ ξε(z)

≤ ε−2‖ρ‖C2h(1 + 2C2)‖M‖(B)

εn‖Vh‖ ∗ ξε(z)

≤ ε−2‖ρ‖C2h(1 + 2C2)C02dεd

c9εd

≤ h

ε2

2d‖ρ‖C2(1 + 2C2)C0

c9

Thus, for

c10 =
‖ρ′‖∞‖ξ′‖∞22dC2

0

c7c9
+

2d‖ρ‖C2(1 + 2C2)C0

c9
, (4.20)

we have ∣∣Hε(z,M)−Hε(z, Vh)
∣∣ ≤ c10

h

ε2
∀z ∈Mh. (4.21)

We now carry on with the proof of (4.13). We have from (4.21) and Lemma 4.0.8 with V = M∣∣∣|Hε(z,M)|2 − |Hε(z, Vh)|2
∣∣∣ ≤ c10

h

ε2

∣∣∣|Hε(z,M)|+ |Hε(z, Vh)|
∣∣∣

≤ c10
h

ε2

∣∣∣2|Hε(z,M)|+ c10
h

ε2

∣∣∣
≤ c10

h

ε2

(
2c5

1

ε
+ c10

h

ε2

)
.
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Recalling (4.11), we have∣∣ϕε(z,M)− ϕε(z,M)
∣∣ ≤ ‖ϕ‖∞∣∣∣|Hε(z,M)|2 − |Hε(z, Vh)|2

∣∣∣+ ‖∇ϕ‖∞
∣∣∣|Hε(z,M)| − |Hε(z, Vh)|

∣∣∣
≤ ‖ϕ‖∞c10

h

ε2

(
2c5

1

ε
+ c10

h

ε2

)
+ ‖∇ϕ‖∞c10

h

ε2

≤ ‖ϕ‖C1c10(2c5 + c10 + 1)
h

ε3
since h ≤ ε ≤ 1.

Finally, using ‖Vh‖(Rn) = ‖M‖(Rn), we obtain∣∣∣ ˆ
Rn
ϕε(·,M)d‖Vh‖ −

ˆ
Rn
ϕε(·, Vh)d‖Vh‖

∣∣∣ ≤ c8‖ϕ‖C1‖M‖(Rn)
h

ε3
,

where
c8 = c10 (2c5 + c10 + 1) , (4.22)

this concludes the proof of (4.13).

Proof of Theorem 4.0.1. LetM be a C3 closed d-submanifold in Rn andM(t)t∈[0,T ] its mean curva-
ture flow (Definition 2.1.1). Let M(t)t∈[0,T ] be the varifolds associated with the familyM(t)t∈[0,T ].
Let Kh be a mesh of Rn of size h ∈ (0, 1) and Vh(t) a discretization of M(t) for every t ∈ [0, T ]
(Definition (1.5)).
The mean curvature flow is continuous in time with respect to the C3-distance on the space of
d-submanifold of Rn (see [21, Chapter 3]), thus, one can bound uniformly on time, thanks to the
compactness of [0, T ], the constants C0, C2 and the maximal principal curvature (as they depend
on the C2-norm of the submanifold). The constant C1 also evolves continuously with respect to
to the C3-distance on the space of d-submanifolds of Rn, as a consequence, it also can be bounded
uniformly on time (see Remark 4.0.5).
Let ε, γ ∈ (0, 1), assume 2h ≤ γε and that γ fulfils the requirements in Remark 4.0.2. Using
‖M(t)‖(Rn) ≤ ‖M(0)‖(Rn) (4.1) and Lemma 4.0.9 with M = M(t), we have:∣∣∣ ˆ t2

t1

ˆ
Rn
−ϕ(z)|Hε(z,M(t))|2 +∇ϕ(z) ·Hε(z,M(t))d‖M(t)‖dt

−
ˆ t2

t1

ˆ
Rn
−ϕ(z)|Hε(z, Vh(t))|2 +∇ϕ(z) ·Hε(z, Vh(t))d‖Vh(t)‖dt

∣∣∣
≤ (c4 + c8)(t2 − t1)‖ϕ‖C2‖M(0)‖(Rn)

h

ε3
,

for all 0 ≤ t1 ≤ t2 ≤ T and ϕ ∈ C2
c (Rn,R+). Combining the previous inequality with (4.5), (4.4)

and
∣∣‖Vh(t)(ϕ)− ‖M‖(ϕ)

∣∣ ≤ Lip(ϕ)∆(‖Vh(t)‖, ‖M‖), we obtain:∣∣∣‖Vh(t2)‖(ϕ)− ‖Vh(t1)‖(ϕ) +

ˆ t2

t1

ˆ
Rn
ϕ(x)|Hε(x, Vh(t))|2 −∇ϕ(x) ·Hε(x, Vh(t))d‖Vh(t)‖(x)dt

∣∣∣
≤ 2 Lip(ϕ) max

t∈{t1,t2}
∆(M(t), Vh(t)) + ‖ϕ‖C1C̃1ε(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn))

+ ‖ϕ‖C1C̃1ε ((t2 − t1)‖M(0)‖(Rn)) + (c4 + c8)(t2 − t1)‖ϕ‖C2‖M(0)‖(Rn)(ε+
h

ε3
)

≤ C‖ϕ‖C2
(

max
t∈{t1,t2}

∆(M(t), Vh(t)) + ε(‖M(t1)‖(Rn)− ‖M(t2)‖(Rn)) + (t2 − t1)‖M(0)‖(Rn)(ε+
h

ε3
)

)
,

(4.23)
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for all 0 ≤ t1 ≤ t2 ≤ T and ϕ ∈ C2
c (Rn,R+), where C = 2 + C̃1 + c4 + c8, and we conclude the

proof of Theorem 4.0.1.

List of constants used in the chapter

• C0 The Ahlfors regularity constant ofM.

• C1 Measures how well Hε approximates H (Lemma 4.0.4).

• C2 The Lipschitz constant of the map y 7→ TyM.

• β = min
{
ξ(s)

∣∣s ∈ [C−2/d
0

4
,
1

2

]}
> 0.

• γ any constant satisfying:

γ < min
{

(8(1 + C
2/d
0 ))−1, max

x∈M(t)
(λ(x, t))−1, β

(
23dC2

0 (Lip(ξ) + 1)
)−1 }

,

λ(x, t) is the maximal principal curvature ofM(t) at x.

• C̃1 = 2C1(2 + C1) (4.5).

• c4 = 2(1 + γ−1)
(
c2

5 + c5

)
.

• c5 = β−1C2
023d+1‖ρ‖C2

(
1 + β−1C2

023d+2‖ξ′‖∞
)

.

• c7 = βC−1
0 2−2d−1 (4.8).

• c8 = c10 (2c5 + c10 + 1) (4.22).

• c9 = β − γC2
023d+1 Lip(ξ) (4.18).

• c10 =
‖ρ′‖∞‖ξ′‖∞22dC2

0

c7c9
+

2d‖ρ‖C2(1 + 2C2)C0

c9
(4.20).

• C = 2 + C̃1 + c4 + c8 appears in the Brakke approximate inequality (Theorem 4.0.1).

• C ′ = ‖M(0)‖(Rn)(2 + C1) + CT appears in the weak version of the Brakke approximate
inequality (Remark 4.0.3).
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Chapter 5

Approximate mean curvature flows of a
general varifold, and their limit
spacetime Brakke flow

This chapter is constituted of an article in preparation [14], in collaboration with B. Buet, G-P.
Leonardi and S. Masnou. The aim of this work is to define a weak notion of mean curvature flow
for general data. Starting from any varifold, we provide a notion of time-discrete approximate
mean curvature flow depending on the time step and an approximation scale ε. By letting the
time step tend to 0, we obtain an approximate mean curvature flow or, in other words and roughly
speaking, a mean curvature flow with speed equal to the approximate mean curvature depending
on ε. Furthermore we study the limit as ε → 0 and we prove a few properties in relation with
Brakke flows and the theory of mean curvature flow.

Organization of the chapter

We recall the definition at a point x ∈ Rn and at a scale ε > 0 of the approximate mean curvature
vector of a varifold V defined on Rn, see [36, Sec. 5] and Sec. 5.1:

hε(x, V ) := −
(

Φε(·) ∗
(Φε ∗ δV )(·)

Φε ∗ ‖V ‖(·) + ε

)
(x)

where Φε is a truncated Gaussian defined on Rn and δV is the first variation of the mass of V
(see 1.12). Then we introduce a time-discrete approximate mean curvature flow with respect to the
approximate mean curvature. We start from an initial varifold V0, we let ε > 0 and T = {ti}mi=0

be a subdivision of the interval [0, 1], and we define by iterative push-forwards the time-discrete
approximate mean curvature flow with parameters V0, ε, T :{

V (0) := V0

V (ti) := (id + (ti − ti−1)hε(·, V (ti−1)))# V (ti−1).
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Since hε has a bounded C2−norm and is continuous with respect to the bounded Lipschitz dis-
tance on varifolds, we prove that the time-discrete approximate mean curvature flow is stable with
respect to the subdivision and the initial datum.

In Section 5.2, for a fixed scale ε and for any initial datum, we prove thanks to the stability
property that the discrete approximate MCF converges as the subdivision’s step tends to 0 to a
limit flow that is unique, i.e. independent of the sequence of subdivisions. We call this limit flow
the approximate mean curvature flow of V0, and we denote it by (Vε(t))t∈[0,1].
We prove that (Vε(t))t∈[0,1] satisfies a Brakke equality for the approximate mean curvature vector.
In view of the definition of generalized normal velocity given in [46, Definition 2.2], we can inter-
pret this equality as: "the approximate MCF has a generalized normal velocity equal to h⊥ε ". We
deduce from the previous equality that the total mass is decreasing as the time increases, such a
property is inherited from the mean curvature flow evolution.

In Section 5.3, we study the property of the limit flow when the smoothing scale ε goes to 0.
We prove that Vε(t) ⊗ dt converges to a limit (up to an extraction on ε) and that the limit satisfies
a Brakke inequality with respect to its spacetime mean curvature (to be defined) if its Rn × Gd,n-
component is assumed to be rectifiable.

In Section 5.4, we show a consistency result on the approximate mean curvature flow.
The appendix in Section 5.5 contains a few technical lemmas used throughout the chapter. 333

5.1 Definition and stability of a time-discrete approximate mean curva-
ture flow

In this section, we will define a time-discrete approximate MCF starting from any varifold V with
finite mass. The construction relies on iterated push-forwards of V by diffeomorphisms of the
form id + τhε, where τ is a given time step and hε is close to the mean curvature of V understood
in a regularization of the distributional mean curvature of V . In Section 5.1.1, we start by recall-
ing the definition (5.5) of the approximate mean curvature hε introduced in [36] after [12]. We
then recall in Proposition 5.1.2 the C2 estimates on the approximate mean curvature established in
[12, 36]. Section 5.1.2 then investigates the effect of push-forwarding the varifold once: in Propo-
sition 5.1.3, we evidence the relation (5.34) between the time step and ε that allows to iterate such
push-forwards and leads to Definition 5.1.4 of time-discrete approximate mean curvature flow.

The authors in [36] worked on varifolds of co-dimension 1, here we work on varifolds of arbi-
trary co-dimension in Rn.

5.1.1 Basic properties of the approximate mean curvature

Let ψ ∈ C∞(Rn) be a radially symmetric function such that:

ψ(x) = 1 for |x| ≤ 1/2, ψ(x) = 0 for |x| ≥ 1,

0 ≤ ψ(x) ≤ 1, |∇ψ(x)| ≤ 3, ‖∇2ψ(x)‖ ≤ 9 for all x ∈ Rn.
(5.1)

Define for each ε ∈ (0, 1):

Φ̂ε(x) :=
1

(2πε2)
n
2

exp
(
− |x|

2

2ε2

)
, Φε(x) := c(ε)ψ(x)Φ̂ε(x), (5.2)
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we have
´
Rn Φ̂ε(x)dx = 1 and c(ε) =

1´
Rn ψ(x)Φ̂ε(x)dx

, c(ε) is chosen so that:

ˆ
Rn

Φε(x) dx = 1. (5.3)

We have, using ψ ≤ 1,

c(ε) =
1´

Rn ψ(x)Φ̂ε(x)dx
≥ 1´

Rn Φ̂ε(x)dx
= 1.

Also, as ψ = 1 on [0, 1
2 ]: ˆ

Rn
ψ(x)Φ̂ε(x)dx ≥

ˆ
B(0, 1

2
)
Φ̂ε(x)dx

by the change of variables y = ε−1x we obtain

ˆ
B(0, 1

2
)
Φ̂ε(x)dx =

ˆ
B(0, 1

2ε
)
Φ̂1(y)dy ≥

ˆ
B(0, 1

2
)
Φ̂1(y)dy =: c−1 (5.4)

we have then, 1 ≤ c(ε) ≤ c where c is a constant depending only on n.
This kernel has a remarkable property which is that the derivatives are bounded by a power of
ε times the kernel + an exponentially small term (see [36, Lemma 4.13 and Lemma 4.14]). This
property is the key ingredient that make the computations in section 5 [36] work. We now define
the approximate mean curvature vector for any varifold V as follows, for any x ∈ Rn:

hε(x, V ) = (Φε ∗ h̃ε(·, V ))(x) , where h̃ε(y, V ) = − (δV ∗ Φε)(y)

(‖V ‖ ∗ Φε)(y) + ε
for any y ∈ Rn. (5.5)

The second convolution guarantees the decay of the mass (up to a small error) as we will see in
(5.26) and later in remark 5.2.7, it also reduces computing ‖hε‖C2 to computing ‖h̃ε‖∞ and ‖Φε‖C2

avoiding to differentiate the fraction h̃ε (see Proposition 5.1.2 for details).
In the following lemma we list some of the properties of the kernel Φε, the first two estimates
simplify the estimates in [36, Lemma 4.13].

Lemma 5.1.1 (Kernel properties). Let ε ∈ (0, 1) and Φε defined as in (5.2). There exists a constant c0

depending only on n such that
|∇Φε| ≤ ε−2Φε + c0χB(0,1), (5.6)

|∇2Φε| ≤ 2ε−4Φε + 2c0χB(0,1). (5.7)

As a consequence,

‖∇Φε‖L1 ≤ (1 + ωnc0)ε−2 and ‖∇2Φε‖L1 ≤ 2(1 + ωnc0)ε−4 , (5.8)

and
Lip(Φε) ≤ (c(2π)−

n
2 + c0)ε−n−2 , Lip(∇Φε) ≤ 2(c(2π)−

n
2 + c0)ε−n−4. (5.9)
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Proof. Define

c0 := sup
ε∈(0,1)

c(ε)
9ε−2−n

(2π)n/2
exp

(
− 1

8ε2

)
<∞. (5.10)

By (5.2) for all x ∈ Rn

∇Φε(x) = −ε−2Φε(x)x+ c(ε)Φ̂ε(x)∇ψ(x) (5.11)

Φε is supported on B(0, 1) therefore for all x ∈ Rn∣∣ε−2Φε(x)x
∣∣ ≤ ε−2Φε(x)

also by construction∇ψ = 0 on [0, 1
2 ] ∪ [1,∞) and |∇ψ| ≤ 3 on [1

2 , 1], this yields for all x ∈ Rn

|c(ε)Φ̂ε(x)∇ψ(x)| ≤ 3c(ε)
ε−n

(2π)
n
2

sup
1
2
≤|x|≤1

exp

(
−|x|

2

ε2

)
χB(0,1)(x)

≤ 3c(ε)
ε−n

(2π)
n
2

exp

(
− 1

8ε2

)
χB(0,1)(x) ≤ c0χB(0,1)(x)

(5.12)

this proves (5.6). For (5.7), differentiating (5.11) gives for all x ∈ Rn

∇2Φε(x) = −ε−2x⊗
(
−ε−2Φε(x)x+ c(ε)Φ̂ε(x)∇ψ(x)

)
− ε−2Φε(x)In

+ c(ε)
(

Φ̂ε(x)∇2ψ(x)− Φ̂ε(x)ε−2∇ψ(x) ⊗ x
)

= ε−4Φε(x)x⊗ x− 2ε−2c(ε)Φ̂ε(x)x⊗∇ψ(x)− ε−2Φε(x)In

+ c(ε)Φ̂ε(x)∇2ψ(x).

We know that ‖v⊗w‖ ≤ ‖v‖w‖ for every two vectors v and w, the fact that Φε and ψ are supported
on [0, 1] implies, for all x ∈ Rn

‖∇2Φε(x)‖ ≤ ε−4Φε(x) + 2ε−2|c(ε)Φ̂ε(x)∇ψ(x)|+ Φε(x) + ‖c(ε)Φ̂ε(x)∇2ψ(x)‖
≤ 2ε−4Φε(x) + 2ε−2|c(ε)Φ̂ε(x)∇ψ(x)|+ ‖c(ε)Φ̂ε(x)∇2ψ(x)‖.

Similarly to (5.12), we have for all x ∈ Rn

2ε−2|c(ε)Φ̂ε(x)∇ψ(x)| ≤ c(ε)6ε
−2−n

(2π)
n
2

sup
1
2
≤|x|≤1

exp

(
−|x|

2

ε2

)
χB(0,1)(x)

≤ c(ε)6ε
−2−n

(2π)
n
2

exp

(
− 1

8ε2

)
χB(0,1)(x) ≤ c0χB(0,1)(x)

(5.13)

and

‖c(ε)Φ̂ε(x)∇2ψ(x)‖ ≤ c(ε)9 ε−n

(2π)
n
2

sup
1
2
≤|x|≤1

exp

(
−|x|

2

ε2

)
χB(0,1)(x)

≤ c(ε)9 ε−n

(2π)
n
2

exp

(
− 1

8ε2

)
χB(0,1)(x) ≤ c0χB(0,1)(x).

(5.14)
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Finally, (5.13) and (5.14) imply

‖∇2Φε‖ ≤ 2ε−4Φε + 2c0χB(0,1)

and this concludes the proof of (5.7). For the L1-estimates, we write using (5.6)

‖∇Φ‖L1 =

ˆ
Rn
|∇Φε(x)|dx ≤

ˆ
Rn

(
ε−2Φε(x) + c0χB(0,1)(x)

)
dx

≤ ε−2

ˆ
Rn

Φε(x) dx+ c0

ˆ
B(0,1)

1 dx

≤ ε−2 + ωnc0 ≤ (1 + ωnc0)ε−2.

(5.15)

Similarly, we prove that ‖∇2Φ‖L1 ≤ 2(1 + c0ωn)ε−4, and this finishes the proof of (5.8).
For the Lipschitz constant, we use the definition of Φε (see (5.2) to get:

Lip(Φε) ≤ (c(2π)−
n
2 + c0)ε−n−2 , Lip(∇Φε) ≤ 2(c(2π)−

n
2 + c0)ε−n−4

and this finishes the proof of (5.9) and Lemma 5.1.1.

The following property is a mere adaptation of [36, Lemma 5.1], we bound the C2-norm of
the approximate mean curvature for ε ∈ (0, 1), here we impose no smallness requirement on ε
contrarily to the original statement.

Proposition 5.1.2 (C2 boundedness of hε). There exists a constant c1 ≥ 2 depending only on n with the
following property. For any ε ∈ (0, 1) and M ∈ [1,+∞), if V ∈ Vd(Rn) is a d–varifold with total mass
‖V ‖(Rn) ≤M , then

‖h̃ε(·, V )‖∞ ≤ c1Mε−2, ‖hε(·, V )‖∞ ≤ c1Mε−2, (5.16)

‖Dhε(·, V )‖∞ ≤ c1Mε−4, (5.17)

‖D2hε(·, V )‖∞ ≤ c1Mε−6. (5.18)

Proof. Let ε ∈ (0, 1), M ≥ 1 and let V be a d–varifold satisfying ‖V ‖(Rn) ≤M .
We set c1 = 2(1 + ωnc0)(1 + c0) and we start with the proof of (5.16). By (1.17) and using that for
all S ∈ Gd,n, ‖S‖ ≤ 1, we have

|(Φε ∗ δV )(x)| =

∣∣∣∣∣
ˆ
Rn×Gd,n

S(∇Φε(x− y)) dV (y, S)

∣∣∣∣∣ ≤
ˆ
Rn
|∇Φε(x− y)| d‖V ‖(y) .

Therefore, applying (5.6) and then (1.16) we obtain

|(Φε ∗ δV )(x)| ≤
ˆ
Rn

(
ε−2Φε(x− y) + c0χB(0,1)(x− y)

)
d‖V ‖(y) ≤ ε−2(Φε ∗ ‖V ‖)(x) + c0M . (5.19)

It remains to write the definition (5.5) of h̃ε(·, V ) and apply (5.19) to infer

‖h̃ε(·, V )‖∞ = sup
x∈Rn

|(Φε ∗ δV )(x)|
Φε ∗ ‖V ‖(x) + ε

≤ ε−2 + ε−1c0M ≤ (1 + c0)Mε−2 . (5.20)
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We can now write definition (5.5) hε = Φε ∗ h̃ε and use ‖Φε‖L1 = 1 and (5.20) to obtain

‖hε(·, V )‖∞ ≤ ‖Φε‖L1 ‖h̃ε(·, V )‖∞ ≤ (1 + c0)Mε−2 , (5.21)

and noting that (1 + c0) ≤ c1 concludes the proof of (5.16).
We similarly have both Dhε(·, V ) = ∇Φε ∗ h̃ε and D2hε(·, V ) = ∇2Φε ∗ h̃ε so that applying (5.8)
together with (5.20) concludes the proof of Proposition 5.1.2 as follows

‖Dhε(·, V )‖∞ ≤ ‖∇Φε‖L1 ‖h̃ε(·, V )‖∞ ≤ (1 + c0ωn)(1 + c0)M ε−4 ≤ c1M ε−4 ,

‖D2hε(·, V )‖∞ ≤ ‖∇2Φε‖L1 ‖h̃ε(·, V )‖∞ ≤ 2(1 + c0ωn)(1 + c0)M ε−6 ≤ c1M ε−6 .

5.1.2 Definition of the time-discrete approximate mean curvature flow

The goal of Section 5.1.2 is to define a time-discrete approximate MCF (see Definition 5.1.4) start-
ing from an initial varifold V0 ∈ Vd(Rn), for a given time discretization T and a regularization
parameter ε. Such a definition relies on iterating push-forwards, starting with the initial varifold
V0, with velocity equal to the approximate mean curvature vector hε. To this end, we first in-
vestigate the effect of a single push-forward: in Proposition 5.1.3, we derive an expansion of the
push-forward of the mass of a varifold under the map f = id+∆thε and with respect to ∆t. Com-
putations rely on the Taylor expansion of the tangential Jacobian (see Lemma 5.5.3) and provide
estimate (5.24). It is then possible to prove that the mass of the push-forward varifold decays up
to a small error ∆t (see (5.26)), hence allowing to iterate push-forwards for suitable time steps (see
condition (5.34)) and resulting in Definition 5.1.4.

Given ε ∈ (0, 1) and V ∈ Vd(Rn), we introduce the notation

fε,V = id + ∆t hε(·, V ) ,

and depending on the context, we will possibly drop the ε or V index dependency.

Proposition 5.1.3. Let ε ∈ (0, 1), M ≥ 1. Let V ∈ Vd(Rn) with ‖V ‖(Rn) ≤ M and S ∈ Gd,n. For
∆t ≥ 0, if

c1c4M∆t ≤ ε4 (5.22)

then f = id + ∆t hε(·, V ) is a diffeomorphism, and

JSf ∈
[1

2
,
2

3

]
∩
[
1− c4∆t‖Dhε‖∞, 1 + c4∆t‖Dhε‖∞

]
. (5.23)

Furthermore, let c5 = 4c2
1c4, then for any ϕ ∈ C2(Rn,R+),∣∣‖f#V ‖(ϕ)− ‖V ‖(ϕ)−∆t δ(V, ϕ)(hε(·, V ))

∣∣ ≤ c5M
3‖ϕ‖C2(∆t)2ε−8, (5.24)

and

δV (hε(·, V )) = −
ˆ
Rn

|(Φε ∗ δV )(y)|2

(Φε ∗ ‖V ‖)(y) + ε
dy ≤ 0 . (5.25)

Assume that ∆t satisfies c5∆tM3 ≤ ε8 then, f is a diffeomorphism and

‖f#V ‖(Rn) ≤ ‖V ‖(Rn) + ∆t. (5.26)

64



Proof. Let ε ∈ (0, 1), ∆t ≥ 0, M ≥ 1 and V ∈ Vd(Rn) satisfying ‖V ‖(Rn) ≤ M . As V is fixed, we
write hε for hε(·, V ) hereafter as well as f = id + ∆t hε.
Step 1: We first prove that f is a diffeomorphism under the condition (5.22). To do so, we only
need to check the hypothesis of Lemma 5.5.6 with h = hε. From (5.16) and (5.22) we can infer that

∆t‖hε‖∞ ≤ c1Mε−2 ≤ 1

2c4
< 1.

From (5.17) and (5.22)

∆t ‖Dhε‖∞ ≤ c1Mε−4 ≤ 1

2c4
< 1, (5.27)

and we can then apply (5.143) (with k = n and Q = ∆t Dhε) we infer by (1.1), (5.22) and (5.17)

|Jf(x)− 1| = |det(In + ∆t Dhε(x))− det(In)| ≤ c2∆t|Dhε(x)|∞ ≤
c2

2c4
< 1

for any x ∈ Rn (using c2 ≤ c4). By Lemma 5.5.6 f is a diffeomorphism of Rn.
Step 2: Let (x, S) ∈ Rn ×Gd,n, we now prove (5.23) and

|JSf(x)− 1−∆t divS(hε(x))| ≤ c4(∆t‖Dhε‖∞)2. (5.28)

Let us write S̃ = (τ1| . . . |τd)t ∈Md,n where {τi}di=1 is an orthonormal basis of S. We recall that we
denote by S the orthogonal projector onto the subspace S and then by construction,

S̃ ◦ S̃t = Id ∈Md and S̃t ◦ S̃ = S ∈Mn .

We recall that by definition of tangential Jacobian (1.9),

JSf(x) = det
(

((In + ∆t Dhε(x)) ◦ S̃t)t ◦ ((In + ∆t Dhε(x)) ◦ S̃t)
) 1

2

and we can apply (5.145) with R = ∆t Dhε(x) and L = S̃, indeed, c3|R|∞ ≤ c3
2c4
≤ 1 thanks to

(5.27). We obtain, again using (5.27),

|JSf(x)− 1| ≤ c4∆t|Dhε(x)|∞ ≤ c4∆t‖Dhε‖∞ ≤
1

2
, (5.29)

hence proving (5.23).
Similarly to the proof of (5.23), we are allowed to use (5.146) with R = ∆t Dhε(x) and L = S̃.
Noting that

tr
(
Dhε(x) ◦ S̃t ◦ S̃

)
= tr(Dhε(x) ◦ S) = divS(hε(x))

we can infer that

|JSf(x)− 1−∆t divS(hε(x))| ≤ c4(∆t |Dhε(x)|∞)2 ≤ c4(∆t‖Dhε‖∞)2 .

Step 3: We now prove (5.24). Let ϕ ∈ C2(Rn,R+) and assume ‖ϕ‖C2 < ∞ (otherwise there is
nothing to prove). Coming back to the definitions of push-forward varifold (Definition 1.4.1) and
weighted first variation (1.13), we have

‖f#V ‖(ϕ)− ‖V ‖(ϕ)−∆t δ(V, ϕ)(hε)

=

ˆ
Rn×Gd,n

ϕ(f(x))JSf(x)− ϕ(x)−∆t ϕ(x) divS(hε(x))−∆t∇ϕ(x) · hε(x) dV (x, S). (5.30)

65



Let (x, S) ∈ Rn ×Gd,n. We first recall that f(x)− x = ∆t hε(x) so that

|f(x)− x| ≤ ∆t ‖hε‖∞ ≤ c1∆tMε−2

thanks to (5.16). We can then apply Taylor’s inequality to ϕ between x and f(x) to obtain

|ϕ(f(x))− ϕ(x)| ≤ |f(x)− x|‖∇ϕ‖∞ ≤ c1M‖ϕ‖C2∆t ε−2 (5.31)

and

|ϕ(f(x))− ϕ(x)−∆t hε(x) · ∇ϕ(x)| = |ϕ(f(x))− ϕ(x)− (f(x)− x) · ∇ϕ(x)|

≤ 1

2
|f(x)− x|2‖∇2ϕ‖∞ ≤

c2
1

2
M2‖ϕ‖C2∆t2 ε−4 . (5.32)

Now rewriting the integrand in the right-hand side of (5.30) and using (5.31), (5.29),(5.28), (5.32)
and Proposition 5.1.2 we have

|ϕ(f(x))JSf(x) −ϕ(x)−∆t ϕ(x) divS(hε(x))−∆t∇ϕ(x) · hε(x)|
≤ |ϕ(f(x))− ϕ(x)| |JSf(x)− 1|+ ϕ(x) |JSf(x)− 1−∆t divS(hε(x))|

+ |ϕ(f(x))− ϕ(x)−∆t hε(x) · ∇ϕ(x)|

≤c1M‖ϕ‖C2∆t ε−2 c4c1M∆t ε−4 + ‖ϕ‖∞c4(c1M∆t ε−4)2 +
c2

1

2
M2‖ϕ‖C2∆t2 ε−4

≤3c2
1c4‖ϕ‖C2M2∆t2 ε−8 ≤ c5‖ϕ‖C2M2∆t2 ε−8

and integrating the previous inequality together with (5.30) leads to (5.24).
Step 4: By definition (5.5), hε = Φε ∗ h̃ε and thus, for all S ∈ Gd,n, divS(hε) = S(∇Φε) ∗ h̃ε. Then,
by definition of δV and (1.17),

δV (hε) =

ˆ
Rn×Gd,n

divS(hε(x)) dV (x, S) =

ˆ
Rn×Gd,n

ˆ
Rn
S(∇Φε(y − x)) · h̃ε(y) dy dV (x, S)

=

ˆ
Rn

ˆ
Rn×Gd,n

S(∇Φε(y − x)) dV (x, S) · h̃ε(y) dy

=

ˆ
Rn

(Φε ∗ δV )(y) · h̃ε(y) dy = −
ˆ
Rn

|(Φε ∗ δV )(y)|2

(Φε ∗ ‖V ‖)(y) + ε
dy ≤ 0.

We are left with the proof of (5.26). We recall that c5 = 4c2
1c4 and we assume that ∆t satisfies

c5∆t ≤ M−3ε8 then ∆t in particular satisfies (5.22), assumption under which the map f is a
diffeomorphism of Rn and (5.28) holds. Consequently, applying Definition 1.4.1 of push-forward
varifold and using (5.28), (5.25), and (5.17), we obtain

‖f#V ‖(Rn) =

ˆ
Rn×Gd,n

JSf(x) dV (x, S)

=

ˆ
Rn×Gd,n

1 + ∆t divS(hε(x)) + (JSf(x)− 1−∆t divS(hε(x))) dV (x, S)

≤ ‖V ‖(Rn) + ∆t δV (hε) + c4M(∆t‖Dhε‖∞)2

≤ ‖V ‖(Rn) +M3c2
1c4∆t2ε−8

≤ ‖V ‖(Rn) + ∆t

hence concluding the proof of (5.26).
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Given M ≥ 1 and a d-varifold V0 satisfying ‖V0‖(Rn) ≤ M , Proposition 5.1.3 gives the con-
dition c5∆t < M−3ε8 allowing to define V1 = f0#V0 with f0 = fε,V0 = id + ∆t hε(·, V0). We
would like to iterate on several time steps and thus push the varifold V1 by the map f1 = fε,V1 =
id+∆thε(·, V1). However, note that ‖f0#V0‖(Rn) ≤M+∆t and not necessarily ‖f0#V0‖(Rn) ≤M :
the choice of ∆t is no longer suitable. To rule out this issue, we can initially choose ∆t satisfying

c5∆t < (M + 1)−3ε8. (5.33)

(5.26) thus ensuring ‖V1‖(Rn) = ‖f0#V0‖(Rn) ≤ ‖V0‖(Rn) + ∆t ≤ M + 1, and we can iterate the
process as long as the mass remains less than M + 1, thus at least b1/∆tc times when consider-
ing uniform time discretizations of [0, 1]. Considering a possibly non uniform time discretization

(∆ti)i=1...m ∈ (0, 1) of [0, a] for a ≤ 1:
m∑
i=1

∆ti = a ≤ 1, one can iterate the process m times with ∆ti

being the time step at step i, this justifies the following definition.

Definition 5.1.4 (Time-discrete approximate MCF). Let M ≥ 1, ε ∈ (0, 1) and a ∈ (0, 1]. Consider a
subdivision T = {ti}mi=0 of [0, a] (see Definition 1.1.1) and assume

c5δ(T ) ≤ (M + 1)−3ε8 (5.34)

where ∆ti = ti − ti−1 for i = 1, . . . ,m and δ(T ) = max1≤i≤m ∆ti.
Let V0 ∈ Vd(Rn) satisfy ‖V0‖(Rn) ≤ M . Define (Vε,T (ti))i=0...m by Vε,T (0) := V0 (t0 = 0) and, for
i = 1, . . . ,m,

Vε,T (ti) := fi#Vε,T (ti−1) with fi = id + ∆ti hε(·, Vε,T (ti−1)) .

We then define the family (Vε,T (t))t∈[0,a] by linear interpolation between the points of the subdivision, and
we call it a time-discrete approximate MCF:

Vε,T (t) := [id + (t− ti)hε(·, Vε,T (ti))]# Vε,T (ti) if t ∈ [ti, ti+1].

Remark 5.1.5. We note that under the assumptions of Definition 5.1.4 (and using the same nota-
tions), we have

‖Vε,T (t)‖(Rn) ≤M + 1, ∀t ∈ [0, a] , (5.35)

and we will use (5.35) extensively throughout the chapter.
Moreover, if we assume that there exists R0 > 0 such that sptV0 ⊂ B(0, R0)×Gd,n, then

∀t ∈ [0, a], sptVε,T ⊂ B(0, R0 + c1(M + 1)ε−2)×Gd,n .

Indeed, thanks to Proposition 5.1.2 and (5.35), for t ∈ [0, a] ⊂ [0, 1],

‖hε(·, Vε,T (t))‖∞ ≤ c1(M + 1)ε−2

and therefore, sptVε,T (t) ⊂ B
(
0, R0 + c1 t (M + 1)ε−2

)
× Gd,n. Such compactness property will

be used when letting ∆t go to 0 to define a limit flow in Section 5.2.

Remark 5.1.6 (Piecewise constant flow). Note that in Definition 5.1.4, we first define Vε,T (ti) at the
points ti of the subdivision T and we then define Vε,T (t) for t ∈ [ti, ti+1] by a linear interpolation
between ti and ti+1. It is possible to consider an alternative definition of the flow between ti and
ti+1, simply taking the following piecewise constant extension: for i ∈ {0, 1, . . . ,m− 1},

V pc
ε,T (t) := Vε,T (ti) if t ∈ (ti, ti+1) .
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As we will see in Proposition 5.2.2, both Vε,T and V pc
ε,T lead to the same limit flow Vε when the size

of the subdivision tends to zero. We consequently restrict our study to only one of the two flows
and we choose to investigate Vε,T introduced in Definition 5.1.4.

Hereafter, M ≥ 1 and ε ∈ (0, 1) are fixed, all subdivisions we consider satisfy (5.34) and we
define time-discrete approximate MCF starting from a varifold of mass less than M .

5.1.3 Stability of the time-discrete approximate MCF with respect to the initial datum

When investigating a discrete scheme of a flow, the stability arises as a crucial issue. More pre-
cisely, we consider in Proposition 5.1.9 two time-discrete approximate MCF (V (t))t and (W (t))t
respectively from V0 and W0 and we prove that the stability holds in terms of bounded Lipschitz
distance: ∆(V (t),W (t)) ≤ exp(Λt)∆(V0,W0), where Λ ∼ ε−n−7. Up to a constant, Λ is an upper
bound of the Lipschitz constant of V 7→ hε(·, V ) with respect to the C1–norm, as established in
Lemma 5.1.7. In Remark 5.1.10, we draw a parallel with the classical time discretization of ODEs
showing that Λ is the expected constant in our setting.

Lemma 5.1.7. Let ε ∈ (0, 1) and M ≥ 1. Let V and W be two varifolds of Vd(Rn) satisfying ‖V ‖(Rn) ≤
M , ‖W‖(Rn) ≤M . There exists c6 ≥ 4c1 only depending on n such that∥∥hε(·, V )−hε(·,W )

∥∥
∞ ≤ c6Mε−n−5∆(V,W ) and

∥∥Dhε(·, V )−Dhε(·,W )
∥∥
∞ ≤ c6Mε−n−7∆(V,W ).

Proof. We set
c6 = max{4c1, (1 + c0ωn)(c(2π)−n/2 + c0)(2 + c1)} (5.36)

thus c6 ≥ 4c1 . Let ε ∈ (0, 1) and M ≥ 1. Let V and W be two varifolds of Vd(Rn) satisfying
‖V ‖(Rn) ≤M , ‖W‖(Rn) ≤M . We first show that

‖Φε ∗ ‖V ‖ − Φε ∗ ‖W‖‖∞ ≤ (c(2π)−
n
2 + c0)ε−n−2∆(V,W ), and

‖Φε ∗ δV − Φε ∗ δW‖∞ ≤ 2(c(2π)−
n
2 + c0)ε−n−4∆(V,W ) .

(5.37)

We have for any x ∈ Rn by (5.9) and the definition (5.2) of Φε∣∣∣Φε ∗ ‖V ‖(x)− Φε ∗ ‖W‖(x)
∣∣∣ =

∣∣∣ ˆ
Rn

Φε(x− y)d‖V ‖(y)−
ˆ
Rn

Φε(x− y)d‖W‖(y)
∣∣∣

=
∣∣∣‖V ‖ (Φε(· − x))− ‖W‖ (Φε(· − x))

∣∣∣
≤ max{‖Φε‖∞,Lip(Φε)}∆(‖V ‖, ‖W‖)
≤ max{c(2π)−

n
2 ε−n, (c(2π)−

n
2 + c0)ε−n−2}∆(‖V ‖, ‖W‖)

≤ (c(2π)−
n
2 + c0)ε−n−2∆(V,W ) ,

since ∆(‖V ‖, ‖W‖) ≤ ∆(V,W ), this gives the first estimate of (5.37). For the second estimate we

first recall that for x ∈ Rn, Φε ∗ δV (x) =

ˆ
Rn×Gd,n

S∇Φε(x− y) dV (y, S) and we thus compute the

Lipschitz constant of the map Θ : (y, S) 7→ S(∇Φε(y)) (the map y 7→ x− y being an isometry), we
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have for (y, S), (z, T ) ∈ Rn ×Gd,n, using ‖S‖ = 1

|Θ(y, S)−Θ(y, T )| = |S(∇Φε(y))− T (∇Φε(z))|
≤ |S(∇Φε(y))− S(∇Φε(z))|+ |S(∇Φε(z))− T (∇Φε(z))|
≤ ‖S‖ |∇Φε(y)−∇Φε(z)|+ ‖S − T‖ |∇Φε(z)|
≤ Lip(∇Φε)|y − z|+ ‖∇Φε‖∞‖S − T‖
≤ 2(c(2π)−

n
2 + c0)ε−n−4 thanks to Lemma 5.1.1.

Therefore Lip(Θ) ≤ 2(c(2π)−
n
2 + c0)ε−n−4, also from (5.6) we have ‖Θ‖∞ ≤ (c(2π)−

n
2 + c0)ε−n−2.

We can now carry on with the proof the the second part of (5.37), for x ∈ Rn,∣∣∣Φε ∗ δV (x)− Φε ∗ δW (x)
∣∣∣ =

∣∣∣ ˆ
Rn
S(∇Φε)(x− y)dV (y, S)−

ˆ
Rn
S(∇Φε)(x− y)dW (y, S)

∣∣∣
≤ max{‖Θ‖∞,Lip(Θ)}∆(V,W )

≤ 2(c(2π)−
n
2 + c0)ε−n−4∆(V,W ) ,

which gives the desired result. We carry on with the proof of Lemma 5.1.7. Let x ∈ Rn, from (5.37),
(5.16), we have∣∣∣h̃ε(x, V )−h̃ε(x,W )

∣∣∣ =
∣∣∣ Φε ∗ δV (x)

Φε ∗ ‖V ‖(x) + ε
− Φε ∗ δW (x)

Φε ∗ ‖W‖(x) + ε

∣∣∣
≤ |Φε ∗ δV (x)− Φε ∗ δW (x)|

Φε ∗ ‖V ‖(x) + ε
+

∣∣∣∣ Φε ∗ δW (x)

Φε ∗ ‖W‖(x) + ε

∣∣∣∣
∣∣Φε ∗ ‖V ‖(x)− Φε ∗ ‖W‖(x)

∣∣
Φε ∗ ‖V ‖(x) + ε

≤ 1

ε
‖Φε ∗ δV − Φε ∗ δW‖∞ + ‖h̃ε(·,W )‖∞

1

ε
‖Φε ∗ ‖V ‖ − Φε ∗ ‖W‖‖∞

≤ 1

ε

(
2(c(2π)−

n
2 + c0)ε−n−4 + c1Mε−2(c(2π)−

n
2 + c0)ε−n−2

)
∆(V,W )

≤ (c(2π)−
n
2 + c0) (2 + c1M) ε−n−5∆(V,W ) (5.38)

≤ c6Mε−n−5∆(V,W ) .

We recall that hε = Φε ∗ h̃ε and we obtain thanks to (5.3) and (5.38):

‖hε(·, V )− hε(·,W )‖∞ ≤ ‖Φε‖L1‖h̃ε(·, V )− h̃ε(·,W )‖∞ ≤ c6Mε−n−5∆(V,W ) .

Similarly Dhε = ∇Φε ∗ h̃ε and using (5.8) and (5.38), we obtain

‖Dhε(·, V )−Dhε(·,W )‖∞ ≤ ‖∇Φε‖L1‖h̃ε(·, V )− h̃ε(·,W )‖∞
≤ ε−2(1 + c0ωn) (c(2π)−n/2 + c0)(2 + c1M) ∆(V,W )ε−n−5

≤ c6Mε−n−7∆(V,W ),

hence concluding the proof.

In Proposition 5.1.8, we investigate the evolution of the bounded Lipschitz distance between
two varifolds V and W through one step of the time-discrete approximate flow introduced in
Definition 5.1.4. The proof relies on the Lemma 5.5.5, Lemma 5.1.7 and on careful estimates of the
Lipschitz constant of the map (x, S, V ) ∈ Rn ×Gd,n × Vd(Rn) 7→ JSfε,V (x).
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Proposition 5.1.8. Let ε ∈ (0, 1), M ≥ 1. Let V ∈ Vd(Rn) with ‖V ‖(Rn) ≤M . For ∆t ≥ 0, such that

c5∆tM3 ≤ ε8. (5.39)

We recall the notation
fε,V := Id + ∆t hε(·, V ).

Let g ∈ C1(Rn,Rn) be such that ‖Dg − In‖∞ ≤ 2c1∆tMε−4. Let c7 = 6(128nc2c3c6 + c1c4). Then, for
any (x, S), (y, T ) ∈ Rn ×Gd,n∣∣JSfε,V (x)− JT g(y)

∣∣ ≤ c7

(
∆tMε−4‖S − T‖+ ∆tMε−6|x− y|+ ‖Dfε,V −Dg‖∞

)
. (5.40)

Let W ∈ Vd(R), ‖W‖(Rn) ≤M , we have∣∣JSfε,V (x)− JT fε,W (y)
∣∣ ≤ c7∆tM

(
ε−4‖S − T‖+ ε−6|x− y|+ ε−n−7∆(V,W )

)
. (5.41)

Moreover, we have

∆((fε,V )#V, g#V ) ≤ ‖V ‖(Rn) (28‖fε,V − g‖C1 + ‖J·fε,V − J·g‖∞) , (5.42)

and,
∆ ((fε,V )#V, (fε,W )#W ) ≤ (1 + c7∆tM2ε−n−7)∆(V,W ). (5.43)

Proof. As previously, ε is fixed throughout the proof and consequently, we can write fV (resp. fW )
instead of fε,V (resp. fε,W ). We recall that for S, T ∈ Gd,n we choose S̃, T̃ as in Lemma 5.5.5 such
that that ‖S̃ − T̃‖ ≤ 2‖S − T‖. In the proof, we use extensively the formulas

S̃ ◦ S̃t = T̃ ◦ T̃ t = Id, ‖S̃‖ = ‖T̃‖ = 1, and ‖A‖ = ‖At‖ for any matrix A.

We define G := Dg − In and recall that by hypothesis one has

‖G‖∞ ≤ 2c1M∆tε−4. (5.44)

Step 1: We prove

‖S̃ ◦Dfε,V (x)t ◦Dfε,V (x) ◦ S̃t − T̃ ◦Dg(y)t ◦Dg(y) ◦ T̃ t‖
≤ 4

(
8c1M∆tε−4‖S − T‖+ c1M∆tε−6|x− y|+ ‖Dfε,V −Dg‖∞

)
.

(5.45)

We set
P := S̃ ◦DfV (x)t ◦DfV (x) ◦ S̃t and N := T̃ ◦Dg(y)t ◦Dg(y) ◦ T̃ t .

Setting F := ∆tDhε(·, V ) for simplicity, we have:

P = Id + S̃ ◦
(
F (x)t + F (x)

)
◦ S̃t + S̃ ◦ F (x)t ◦ F (x) ◦ S̃t

= Id +Af +Bf ,

and similarly

N = Id + T̃ ◦
(
Gt(y) +G(y)

)
◦ T̃ t + T̃ ◦Gt(y) ◦G(y) ◦ T̃ t

= Id +Ag +Bg.
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Then
‖P −N‖ ≤ ‖Af −Ag‖+ ‖Bf −Bg‖.

We have from (5.142)

‖Af −Ag‖ ≤ 2 (‖F (x)‖+ ‖G(y)‖) ‖S̃ − T̃‖+ 2‖F (x)−G(y)‖. (5.46)

Similarly, from (5.142) we can infer that

‖Bf −Bg‖ ≤ 2
(
‖F (x)‖2 + ‖G(y)‖2

)
‖S̃ − T̃‖+ (‖F (x)‖+ ‖G(y)‖) ‖F (x)−G(y)‖. (5.47)

We note that using (5.18) (we recall that F (x) = ∆tDhε(x, V ))

‖F (x)−G(y)‖ ≤ ‖F (x)− F (y)‖+ ‖F (y)−G(y)‖ ≤ c1M∆tε−6|x− y|+ ‖DfV −Dg‖∞. (5.48)

Finally, from (5.46), (5.47) , (5.48) and Lemma 5.5.5 we obtain (using ‖F (x)‖ ≤ c1M∆tε−4 ≤ 1 and
‖G(y)‖ ≤ 2c1M∆tε−4 ≤ 1)

‖P −N‖ ≤ 4 (‖F (x)‖+ ‖G(y)‖) ‖S̃ − T̃‖+ 4‖F (x)−G(y)‖
≤ 4

(
c1M∆tε−4 + 2c1M∆tε−4

)
‖S̃ − T̃‖+ 4c1M∆tε−6|x− y|+ 4‖Df −Dg‖∞

≤ 32c1M∆tε−4‖S − T‖+ 4c1M∆tε−6|x− y|+ 4‖DfV −Dg‖∞

and this finishes the proof of (5.45).
Step 2: We prove∣∣JSfε,V (x)−JT g(y)

∣∣ ≤ 512c1c2∆tMε−4‖S−T‖+64c1c2∆tMε−6|x−y|+64c2‖Dfε,V−Dg‖∞, (5.49)

then (5.40) follows directly by definition of c7 (recalling that 4c1 ≤ c6).
Let V ∈ Vd(Rn) be such that ‖V ‖(Rn) ≤M , let (x, S), (y, T ) ∈ Gd,n and set

P = S̃ ◦DfV (x)t ◦DfV (x) ◦ S̃t and N = T̃ ◦Dg(y)t ◦Dg(y) ◦ T̃ t .

Let us show that

‖P − Id‖ ≤
1

4
, ‖N − Id‖ ≤

1

4
and P is invertible with ‖P−1‖ ≤ 2 .

To this end, we apply Lemma 5.5.3 with L = S̃ and R = ∆tDhε(x, V ). Using (5.17) and (5.39), we
first note that

∀z ∈ Rn, ∆t |Dhε(z, V )|∞ ≤ ∆t c1Mε−4 ≤ 1

4c1c4
≤ 1

4c4
< 1 since c5 = 4c2

1c4 and c1 ≥ 1 .

(5.50)

In particular |R|∞ ≤
1

4c4
≤ 1 allows to apply (5.144) so that

‖P − Id‖ ≤ d |P − Id|∞ ≤ d
∣∣∣S̃ ◦ (F (x)t + F (x)

)
◦ S̃t + S̃ ◦ F (x)t ◦ F (x) ◦ S̃t

∣∣∣
∞

≤ nc3 |F (x)|∞ ≤
nc3

4c4
≤ 1

16
<

1

4
since c4 ≥ 4nc3 .

(5.51)
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As c3|R|∞ ≤ 1, we can also apply (5.145) to conclude that
∣∣∣det(P )

1
2 − 1

∣∣∣ ≤ c4|R|∞ ≤ 1
2 < 1 and

thus P is invertible. Furthermore, using (5.51), we have

‖P−1‖ ≤ ‖P−1 − Id‖+ ‖Id‖ ≤ ‖P−1‖‖P − Id‖+ 1 ≤ 1

2
‖P−1‖+ 1 ⇒ ‖P−1‖ ≤ 2 . (5.52)

We recall that Dg(y) = In +G(y), from (5.44) and (5.34) we can assert that

|G(y)|∞ ≤ 2c1M∆tε−4 ≤ 1

2c4
≤ 1

(where we used c5 = 4c2
1c4, c4 ≥ 2 and c1 ≥ 1). We can thus apply (5.144) to obtain

‖N − Id‖ ≤ d |N − Id|∞ = d
∣∣∣T̃ ◦ (G(y)t +G(y)) ◦ T̃ t + T̃ ◦G(y)t ◦G(y) ◦ T̃ t

∣∣∣
∞

≤ nc3 |G(y)|∞ ≤
nc3

c4
≤ 1

4
since c4 ≥ 4nc3.

(5.53)

We can now show that P and N satisfy the condition given in (5.152). Indeed, from (5.51), (5.52)
and (5.53), we have

‖P−1‖‖P −N‖ ≤ 2‖(P − Id)− (N − Id)‖ ≤ 2

(
1

4
+

1

4

)
≤ 1

and thus applying (5.152) leads to

|det(P )− det(N)| ≤ c2 |det(P )| ‖P−1‖ ‖P −N‖ ≤ 8c2 ‖P −N‖ (5.54)

since det(P ) = JSfV (x)2 ≤ 4 by (5.23). We know that for a ≥ 1
2 , b ≥ 0

|a− b| = |a
2 − b2|
a+ b

≤ 2|a2 − b2|. (5.55)

We have by (5.23) det(P )
1
2 = JSfV (x) ≥ 1

2 and by the positivity of the tangential Jacobian

det(N) ≥ 0, applying (5.55) with a = det(P )
1
2 and b = det(N)

1
2 we obtain using (5.54),∣∣∣det(P )

1
2 − det(N)

1
2

∣∣∣ ≤ 2 |det(P )− det(N)| ≤ 16c2‖P −N‖. (5.56)

Finally we obtain (5.49) from (5.56), (5.45) and the definition of P and N .
Step 3: proof of (5.41). We fix W ∈ Vd(Rn) satisfying ‖W‖(Rn) ≤M and (x, S), (y, T ) ∈ Rn ×Gd,n.
From (5.17) we can state that ‖DfW ‖∞ ≤ 2c1M∆tε−4, this allows to apply (5.49) with fV and
g = fW so that∣∣JSfV (x)− JT fW (y)

∣∣ ≤ 512c1c2M∆tε−4‖S − T‖+ 64c1c2M∆tε−6|x− y|+ 64c2‖DfV −DfW ‖∞.
(5.57)

From Lemma 5.1.7 we deduce that

‖DfV −DfW ‖∞ ≤ ∆t‖Dhε(·, V )−Dhε(·,W )‖∞ ≤ c6M∆tε−n−7∆(V,W ) (5.58)
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recalling that c7 = 6(128nc2c3c6 + c1c4) we obtain (noting that 4c1 ≤ c6)∣∣JSfV (x)− JT fW (y)
∣∣ ≤ 512c1c2︸ ︷︷ ︸

≤128c2c6

M∆tε−4‖S − T‖+ 64c1c2M∆tε−6|x− y|+ 64c2c6M∆tε−n−7∆(V,W )

≤ c7∆tM
(
ε−6|x− y|+ ε−4‖S − T‖+ ε−n−7∆(V,W )

)
(5.59)

and we finish the proof of (5.41).
Step 4: We now study the Lipschitz constant of the map (x, S, f) 7→ Df(x)(S), which will be
crucial in proving the remaining estimates of the proposition. We namely prove

‖Dfε,V (x)(S)−Dg(y)(T )‖ ≤ (1+326nc1c3M∆tε−4)‖S−T‖+41c1M∆tε−6|x−y|+41‖Dfε,V−Dg‖∞.
(5.60)

By Definition (1.10) we have

Df(x)(S) = Y (Y tY )−1Y t and Dg(y)(T ) = Z(ZtZ)−1Zt

where Y = Df(x) ◦ S̃t and Z = Dg(y) ◦ T̃ t. We recall the following notations:

P = S̃ ◦DfV (x)t ◦DfV (x) ◦ S̃t(= Y tY ) and N = T̃ ◦Dg(y)t ◦Dg(y) ◦ T̃ t(= ZtZ) ,

and F (x) := ∆tDhε(x, V ), G(y) := Dg(y)− In. By the formulas S̃t ◦ S̃ = S and T̃ t ◦ T̃ = T , if we
set P̃ = P−1 − Id and Ñ = N−1 − Id we obtain

Y (Y tY )−1Y t =
(
S̃t + F (x) ◦ S̃t

)
◦ P−1 ◦

(
S̃ + S̃ ◦ F (x)t

)
= S + S̃t ◦ P̃ ◦ S̃ + F (x) ◦ S̃t ◦ P−1 ◦ S̃ + S̃t ◦ P−1 ◦ S̃ ◦ F (x)t︸ ︷︷ ︸

=Rf

+F (x) ◦ S̃t ◦ P−1 ◦ S̃ ◦ F (x)t

= S + Cf +Rf + Ef

and similarly

Z(ZtZ)−1Zt =
(
T̃ t +G(y) ◦ T̃ t

)
◦N−1 ◦

(
T̃ + T̃ ◦G(y)t

)
= T + T̃ t ◦ Ñ ◦ T̃ +G(y) ◦ T̃ t ◦N−1 ◦ T̃ + T̃ t ◦N−1 ◦ T̃ ◦G(y)t︸ ︷︷ ︸

=Rg

+G(y) ◦ T̃ t ◦N−1 ◦ T̃ ◦G(y)t

= T + Cg +Rg + Eg.

We have then,

‖Y (Y tY )−1Y t − Z(ZtZ)−1Zt‖ ≤ ‖S − T‖+ ‖Cf − Cg‖+ ‖Df −Dg‖+ ‖Ef − Eg‖. (5.61)

We first prove that

‖Cf − Cg‖ ≤ 144nc1c3M∆tε−4‖S − T‖+ 16c1M∆tε−6|x− y|+ 16‖DfV −Dg‖∞. (5.62)

From (5.51) and using (5.17) we have

‖P − Id‖ ≤ dc3‖F (x)‖∞ ≤ dc3‖F (x)‖ ≤ dc1c3M∆tε−4.
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In particular, (5.52) implies that ‖P−1‖ ≤ 2. Therefore,

‖P̃‖ = ‖P−1 − Id‖ ≤ ‖P−1‖‖P − Id‖ ≤ 2dc1c3M∆tε−4.

Similarly (recalling that ‖G(y)‖ ≤ 3c1M∆tε−4 ≤ 1 ) (5.53) implies

‖N − Id‖ ≤ nc3|G(y)|∞ ≤ nc3‖G(y)‖ ≤ 2nc1c3M∆tε−4.

In particular, same computations as in (5.52) implies that ‖N−1‖ ≤ 2. Therefore,

‖Ñ‖ = ‖N−1 − Id‖ ≤ ‖N−1‖‖N − Id‖ ≤ 4nc1c3M∆tε−4.

Finally, by (5.45) we have

‖P̃ − Ñ‖ = ‖(P−1 − Id)− (N−1 − Id)‖ ≤ ‖P−1 (P −N)N−1‖ ≤ ‖P−1‖‖N−1‖‖P −N‖
≤ 16

(
8c1M∆tε−4‖S − T‖+ c1M∆tε−6|x− y|+ ‖DfV −Dg‖∞

)
.

(5.63)

We carry on with the proof of (5.62), we write using the previous estimates, Lemma 5.5.5 and
(5.142)

‖Cf − Cg‖ ≤ ‖S̃t ◦ P̃ ◦ S̃ − T̃ t ◦ Ñ ◦ T̃‖
≤ 2(‖P̃‖+ ‖Ñ‖)‖S − T‖+ ‖P̃ − Ñ‖ ≤ 16nc1c3M∆tε−4‖S − T‖+ ‖P̃ − Ñ‖
≤ 144nc1c3M∆tε−4‖S − T‖+ 16c1M∆tε−6|x− y|+ 16‖DfV −Dg‖∞

and we are done with (5.62). We now prove

‖Rf −Rg‖ ≤ 144c1M∆tε−4‖S − T‖+ 20c1M∆tε−6|x− y|+ 20‖DfV −Dg‖∞. (5.64)

Indeed, using that P t = P , N t = N , and recalling that ‖P−1‖ ≤ 2 and ‖N−1‖ ≤ 2, we deduce that

‖Rf −Rg‖ = ‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ + S̃t ◦ P−1 ◦ S̃ ◦ F (x)t −G(y) ◦ T̃ t ◦N−1 ◦ T̃ − T̃ t ◦N−1 ◦ T̃ ◦G(y)t‖
≤ 2‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ −G(y) ◦ T̃ t ◦N−1 ◦ T̃‖
≤ 2‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ − F (x) ◦ S̃t ◦ P−1 ◦ T̃‖+ 2‖F (x) ◦ S̃t ◦ P−1 ◦ T̃ − F (x) ◦ S̃t ◦N−1 ◦ T̃‖
+ 2‖F (x) ◦ S̃t ◦N−1 ◦ T̃ − F (x) ◦ T̃ t ◦N−1 ◦ T̃‖+ 2‖F (x) ◦ T̃ t ◦N−1 ◦ T̃ −G(y) ◦ T̃ ◦N−1 ◦ T̃‖
≤ 2‖F (x)‖‖P−1‖‖S̃ − T̃‖+ 2‖F (x)‖‖P−1 −N−1‖
+ 2‖F (x)‖‖N−1‖‖S̃ − T̃‖+ 2‖N−1‖‖F (x)−G(y)‖
≤ 16c1M∆tε−4‖S − T‖+ 2c1M∆tε−4︸ ︷︷ ︸

≤1

‖P̃ − Ñ‖+ 4 Lip(F )|x− y|+ 4‖DfV −Dg‖∞

then the estimate (5.64) follows from (5.63) and Lip(F ) ≤ c1M∆tε−6 (estimate (5.18)).
We now show that

‖Ef − Eg‖ ≤ 38c1M∆tε−4‖S − T‖+ 5c1M∆tε−6|x− y|+ 5‖DfV −Dg‖∞. (5.65)
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Indeed, recalling that ‖P−1‖ ≤ 2, ‖N−1‖ ≤ 2, ‖F‖∞ ≤ c1M∆tε−4 and ‖G‖∞ ≤ 2c1M∆tε−4 and
using Lemma 5.5.5 one has

‖Ef − Eg‖ = ‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ ◦ F (x)t −G(y) ◦ T̃ t ◦N−1 ◦ T̃ ◦G(y)t‖
≤ ‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ ◦ F (x)t − F (x) ◦ S̃t ◦ P−1 ◦ S̃ ◦G(y)t‖
+ ‖F (x) ◦ S̃t ◦ P−1 ◦ S̃ ◦G(y)t − F (x) ◦ S̃t ◦ P−1 ◦ T̃ ◦G(y)t‖
+ ‖F (x) ◦ S̃t ◦ P−1 ◦ T̃ ◦G(y)t − F (x) ◦ S̃t ◦N−1 ◦ T̃ ◦G(y)t‖
+ ‖F (x) ◦ S̃t ◦N−1 ◦ T̃ ◦G(y)t − F (x) ◦ T̃ t ◦N−1 ◦ T̃ ◦G(y)t‖
+ ‖F (x) ◦ T̃ t ◦N−1 ◦ T̃ ◦G(y)t −G(y) ◦ T̃ t ◦N−1 ◦ T̃ ◦G(y)t‖
≤
(
‖F (x)‖‖P−1‖+ ‖G(y)‖‖N−1‖

)
‖F (x)−G(y)‖+ ‖F (x)‖‖G(y)‖(‖P−1‖+ ‖N−1‖)‖S̃ − T̃‖

+ ‖F (x)‖‖G(y)‖(‖P−1 −N−1‖)
≤ 6c1M∆tε−4‖F (x)−G(y)‖+ 16c2

1M
2∆t2ε−8‖S − T‖+ 2c2

1M
2∆t2ε−8‖P−1 −N−1‖

≤ ‖F (x)−G(y)‖+ ∆t‖S − T‖+ ‖P̃ − Ñ‖,

where we used c5∆tM3ε−8 ≤ 1, c5 = 4c2
1c4, c1 ≥ 2 and c4 ≥ 4. Now, we use ‖F (x) − G(y)‖ ≤

c1M∆tε−6|x − y| + ‖DfV − Dg‖ and (5.63) to deduce (5.65). Finally, plugging (5.62), (5.64) and
(5.65) into (5.61) finishes the proof of (5.60).
Step 5: proof of (5.42). Let ϕ ∈ C0,1(Rn × Gd,n,R) satisfying ‖ϕ‖∞ ≤ 1 and Lip(ϕ) ≤ 1. For
(x, S) ∈ Rn ×Gd,n, from (5.60) and (5.23) we have∣∣ϕ(fV (x), DfV (x)(S))JSfV (x)− ϕ(g(x), Dg(x)(S))JSg(x)

∣∣
≤
∣∣ϕ(fV (x), DfV (x)(S))− ϕ(g(x), Dg(x)(S))

∣∣|JSfV (x)|+ ϕ(g(x), Dg(x)(S))|JSfV (x)− JSg(x)|
≤ Lip(ϕ) (|fV (x)− g(x)|+ ‖DfV (x)(S)−Dg(x)(S)‖) ‖J·fV ‖∞ + ‖ϕ‖∞|JSfV (x)− JSg(x)|

≤ ‖fV − g‖∞ + 41
2

3
‖DfV −Dg‖∞ + ‖J·fV − J·g‖∞ ≤ 28‖fV − g‖C1 + ‖J·fV − J·g‖∞

where ‖ · ‖∞ is taken over all (x, S) ∈ Rn ×Gd,n. From the previous inequality and the definition
of the push-forward, one has∣∣fV#V (ϕ)− g#V (ϕ)

∣∣ ≤ ‖V ‖(Rn) (28‖fV − g‖C1 + ‖J·fV − J·g‖∞ ) .

We can eventually take the supremum with respect to ϕ and conclude

∆(fV#V, g#V ) = sup
‖ϕ‖∞≤1,
Lip(ϕ)≤1

∣∣fV#V (ϕ)− g#V (ϕ)
∣∣ ≤ ‖V ‖(Rn) (28‖fV − g‖C1 + ‖J·fV − J·g‖∞) .

Step 6: proof of (5.43) . We first apply (5.42) with V = W , f = fV and g = fW so that (recalling that
c7 = 6(128nc2c3c6 + c1c4))

∆ ((fV )#W, (fW )#W ) ≤M (28‖fV − fW ‖C1 + ‖J·fV − J·fW ‖∞)

≤ 28M∆t‖hε(·, V )− hε(·,W )‖C1 + 64c2c6M
2∆tε−n−7∆(V,W ) by (5.59)

≤ (56c6 + 64c2c6)M2∆t ε−n−7∆(V,W ) by Lemma 5.1.7

≤ c7

2
M2∆t ε−n−7∆(V,W ). (5.66)
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We now prove that

∆ ((fV )#V, (fV )#W ) ≤
(

1 +
c7

2
M2∆tε−6

)
∆(V,W ) . (5.67)

Let ϕ ∈ C0,1
c (Rn ×Gd,n,R) satisfying ‖ϕ‖∞ ≤ 1 and Lip(ϕ) ≤ 1 and coming back to the definition

of ∆ (see Definition 1.2), we consider ψ : (x, S) 7→ ϕ(fV (x), DfV (x)(S)) JSfV (x). As fV is a C1-
diffeomorphism, we have ψ ∈ C0

c(Rn ×Gd,n) and by definition of varifold push-forward,∣∣∣∣ˆ ϕ d(fV )#V −
ˆ
ϕ d(fV )#W

∣∣∣∣ =

∣∣∣∣ˆ ψ dV −
ˆ
ψ dW

∣∣∣∣ ≤ max(‖ψ‖∞,Lip(ψ))∆(V,W ) . (5.68)

One has to pay attention to the fact that the ‖ · ‖∞ and Lip(·) refer to both variables (x, S) ∈
Rn × Gd,n. Introducing the notations ψ1 : (x, S) 7→ DfV (x)(S) = (In + ∆t Dhε(x, V )) (S) and
ψ2 : (x, S) 7→ JSfV (x), we have

Lip(ψ1) ≤ (1 + 326nc1c3M∆tε−6) , Lip(ψ2) ≤ 128c2c6M∆t ε−6 ,

‖ψ2‖∞ ≤ 1 + c1c4M∆t ε−4 and Lip(fV ) ≤ 1 + c1M∆t ε−4 . (5.69)

Indeed, let (x, S), (y, T ) ∈ Rn ×Gd,n, then (5.60) with fV and g = fW imply

|ψ1(x, S)− ψ1(y, T )| ≤ (1 + 326nc1c3M∆tε−4)‖S − T‖+ 41c1M∆tε−6|x− y|
≤ (1 + 326nc1c3M∆tε−6)(‖S − T‖+ |x− y|).

Furthermore, by (5.59)

|ψ2(x, S)− ψ2(y, T )| ≤ 128c2c6M∆t ε−6 (|x− y|+ ‖S − T‖) ,

and by (5.23) and (5.17), |JSfV (x)| ≤ 1 + c4∆t ‖Dhε(·, V )‖∞ ≤ 1 + c1c4M∆t ε−4. We also have
Lip(fV ) ≤ 1 + ∆t Lip(hε) ≤ 1 + c1M∆t ε−4 thanks to (5.17). With (5.69) in hand, we can estimate
Lip(ψ) as follows:

|ψ(x, S)− ψ(y, T )|
≤ |ϕ(fV (x), ψ1(x, S))− ϕ(fV (y), ψ1(y, T ))| ‖ψ2‖∞ + ‖ϕ‖∞ Lip(ψ2) (|x− y|+ ‖S − T‖)
≤ [Lip(ϕ) (max{Lip(fV ),Lip(ψ1)}) ‖ψ2‖∞ + Lip(ψ2)] (|x− y|+ ‖S − T‖)

and therefore, recalling that c7 = 6(128nc2c3c6 + c1c4), we have using c6 ≥ 4c1:

Lip(ψ) ≤
(
1 + 326nc1c3M∆tε−6

) (
1 + c1c4M∆t ε−4

)
+ 128c2c6M∆t ε−6

≤1 + (326nc1c3 + c1c4 + 128c2c6)M∆tε−6 + 326nc2
1c3c4M

2∆t2 ε−10

≤ 1 + (82nc3c6 + c1c4 + 128c2c6 + 21nc3c6)M∆tε−6

≤
(

1 +
c7

2
M2∆tε−6

)
, (5.70)

since by assumption 1 ≤M and (noting that c6 ≥ 4 and by definition c5 = 4c2
1c4)

326nc2
1c3c4M

2∆t2 ε−10 ≤ 82nc3c5M
4∆t2ε−10 ≤ 82nc3M∆tε−2 ≤ 21nc3c6M∆tε−6

‖ψ‖∞ ≤ ‖ϕ‖∞‖ψ2‖∞ ≤ ‖ψ2‖∞ ≤
(

1 +
c7

2
M∆tε−6

)
(5.71)

we insert (5.70) and (5.71) in (5.68) and take the supremum over all ϕ to infer (5.67). Combining
(5.67) and (5.66) we conclude the proof of (5.43), and subsequently the proof of Proposition 5.1.8.
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Iterating Proposition 5.1.8 leads to the following stability result on the time-discrete approxi-
mate MCF.

Proposition 5.1.9 (Stability with respect to the initial datum). Let ε ∈ (0, 1) and M ≥ 1. Let V0 and
W0 be two varifolds in Vd(Rn) with ‖V0‖(Rn) ≤M, ‖W0‖(Rn) ≤M .
Let T = {ti}mi=0 be a subdivision of [0, 1] (in the sense of Definition 1.1.1) satisfying (5.34). Denote by
Vε,T (t) (resp. Wε,T (t)) the time-discrete approximate MCF with respect to T starting from V0 (resp. W0)
as introduced in Definition 5.1.4. Then, for any t ∈ [0, 1], one has

∆ (Vε,T (t),Wε,T (t)) ≤ exp
(
c7,M t ε

−n−7
)
∆(V0,W0), (5.72)

where c7,M = c7(M + 1)2 and c7 was introduced in Proposition 5.1.8.

Proof. As ε ∈ (0, 1) and the subdivision T are fixed, we write V (t) (resp. W (t)) for Vε,T (t) (resp.
Wε,T (t)) hereafter. From (5.43) applied with V = V (ti−1),W = W (ti−1) and ∆t = di = ti − ti−1,
and noting that ‖V (ti−1)‖(Rn) ≤ M + 1 and ‖W (ti−1)‖(Rn) ≤ M + 1 (see Remark 5.1.5), we infer
that for any i ∈ {1 . . . ,m}we have:

∆ (V (ti),W (ti)) ≤ (1 + c7,Mdi ε
−n−7)∆(V (ti−1),W (ti−1)) .

By iteration of the previous inequality for k ∈ {1 . . . , i} and applying the inequality 1 +a ≤ exp(a)
in R, we obtain

∆ (V (ti),W (ti)) ≤
i∏

k=1

(1 + c7,Mdk ε
−n−7)∆(V (0),W (0)) ≤︸︷︷︸∑i

k=1 dk=ti

exp
(
c7,M ti ε

−n−7
)
∆(V0,W0) .

Let now t ∈ (ti, ti+1] and apply once again Proposition 5.1.8 (with ∆t = t− ti) so that

∆ (V (t),W (t)) ≤ (1 + c7,M (t− ti) ε−n−7)∆ (V (ti),W (ti))

≤ (1 + c7,M (t− ti)ε−n−7) exp
(
c7,M ti ε

−n−7
)
∆(V0,W0)

≤ exp
(
c7,M t ε

−n−7
)
∆(V0,W0) ,

thus ending the proof of the stability of the time-discrete approximate MCF with respect to the
initial datum.

Remark 5.1.10 (Analogy with ODE discretization). The construction of the time-discrete approx-
imate MCF defined in our work can be compared to the discretization of the classical Cauchy
problem in [0, T ]: {

y′(t) = f(y, t),
y(0) = y0.

It is known that the stability constant (with respect to the supremum norm on [0, T ]) for the explicit
Euler discretization of the ODE is exp(LT ) with L = max

t≤T
Lip(f(·, t)) (see for instance [8, Section

2.4]). Comparing with the stability estimate (5.72) we obtain in Proposition 5.1.9, we observe that
c7,Mε

−n−7 is indeed a bound on the Lipschitz constant of V 7→ Hε(·, V ) when Vd(Rn) is endowed
with the Bounded Lipschitz distance ∆ and C1(Rn,Rn) is endowed with ‖ · ‖C1 , see Lemma 5.1.7.
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5.1.4 Stability with respect to the subdivision

In this section, we investigate the robustness of the time-discrete approximate MCF (introduced
in Definition 5.1.4) with respect to the choice of the subdivision T . It is a natural property to ex-
pect for a numerical scheme and it is furthermore crucial in order to take the limit "δ(T ) → 0”
and obtain a well-defined “time-continuous” approximate MCF as subsequently done in Theo-
rem 5.2.1. We establish in Proposition 5.1.11 that time-discrete approximate MCF are stable with
respect to subdivisions. The proof of Proposition 5.1.11 is split into several steps: the section starts
with two lemmas (Lemma 5.1.12 and 5.1.13) aiming to compare two flows corresponding to a fine
subdivision and the trivial subdivision of small time interval [0, δ]. Then, in Lemma 5.1.15 we
extend the comparison to the case of two nested subdivisions of the interval [0, 1] from which
Proposition 5.1.11 can be inferred straightforwardly.

Proposition 5.1.11 (Stability with respect to the subdivision). Let ε ∈ (0, 1) and M ≥ 1. Let V0 ∈
Vd(Rn) with ‖V0‖(Rn) ≤M , let T1 = {ti}mi=1 and T2 = {sj}m

′
j=1 be two subdivisions (Definition 1.1.1) of

[0, 1] satisfying (5.34). Let Vε,T1(t) (resp.Vε,T2(t)) be the time-discrete approximate MCF with respect to T1

(resp. T2) starting from V0. We set:
δ = max

{
δ(T1), δ(T2)

}
.

Then, for all t ∈ [0, 1], one has:

∆(Vε,T1(t), Vε,T2(t)) ≤ c10,M tδε
−n−11 exp

(
c7,M tε

−n−7
)
.

where c10,M = c10(M + 1)5 and c10 is a constant depending only on n and c7,M was introduced in
Proposition 5.1.9.

Before proving our Proposition 5.1.11, we shall introduce some preliminary lemmas.

In the following lemma, we measure how far the push-forward operation is from satisfying
the semigroup property. In practice, we measure how far apart are two time-discrete approximate
MCFs constructed with respect to two subdivisions including the trivial subdivision.

Lemma 5.1.12. Let ε ∈ (0, 1), M ≥ 1 and δ ≥ 0 such that δc5(M + 1)3ε8 ≤ 1. Let V0 ∈ Vd(Rn) with
‖V0‖(Rn) ≤ M . Consider T = {ti}mi=1 a given subdivision (1.1.1) of [0, δ] and T ′ the trivial subdivision
of [0, δ]. For i ∈ {1, . . .m}, we introduce

di = ti − ti−1 and f̃i = (id + di hε(·, V0)) .

We then consider two different flows:

•
(
Vε,T ′(ti)

)
i=0...m

where Vε,T ′ is the time-discrete approximate MCF of V0 with respect to T ′ accord-
ing to Definition 5.1.4,

•
(
Ṽε,T (ti)

)
i=0...m

is defined as follows:{
Ṽε,T (0) := V0

Ṽε,T (ti) := (f̃i)#Ṽε,T (ti−1) ∀i ∈ {1, . . .m}.
(5.73)

Then,
∆
(
Ṽε,T (ti), Vε,T ′(ti)

)
≤ c8M

3t2i ε
−10 ∀ i ∈ {0, . . .m},

where c8 = 112c2
1 + 3c2

1c7.
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It is important to note that using the previous notation with ∆t = di, we have f̃i = fε,V0 while
the definition of time-discrete approximate MCF would involve fε,Vε,T (ti−1) instead. The velocity
hε is taken with respect to the initial varifold all along the subdivision when defining Ṽε,T .

Proof. We introduce the following notations: g0 = g̃0 = f0 = f̃0 = id and

∀i ∈ {1, . . .m} gi = id + tihε(·, V0) and g̃i = f̃i ◦ · · · ◦ f̃1 .

Step 1: we first prove that for all i ∈ {1, . . . ,m},

‖g̃i − gi‖C1 ≤ 4c2
1M

2t2i ε
−10 . (5.74)

Indeed, let i ∈ {1, . . .m} and x ∈ Rn, we have by definition

g̃i(x) = f̃i ◦ . . . ◦ f̃1(x) = f̃i (g̃i−1(x)) = g̃i−1(x) + di hε(g̃i−1(x), V0) = x+

i∑
k=1

dkhε (g̃k−1(x), V0) ,

hence |g̃i(x)− x| ≤
i∑

k=1

dk |hε (g̃k−1(x), V0)| ≤ ti ‖hε(·, V0)‖∞ , (5.75)

gi(x) = x+ ti hε(x, V0) = x+
i∑

k=1

dk hε (x, V0) ,

and applying the mean value theorem we infer

|g̃i(x)− gi(x)| ≤
i∑

k=1

dk |hε (g̃k−1(x), V0)− hε (x, V0)| ≤
i∑

k=1

dk‖Dhε(·, V0)‖∞ |g̃k−1(x)− x|

≤ ti ti−1‖Dhε(·, V0)‖∞‖hε(·, V0)‖∞
≤ t2i c2

1M
2ε−6 thanks to Proposition 5.1.2. (5.76)

We proceed similarly to bound the derivatives but we have to handle the termDg̃i(x) arising from
the chain rule applied to x 7→ hε(g̃i(x), V0): recalling that g̃i = (id + di hε(·, V0)) ◦ g̃i−1, we infer for
x ∈ Rn and i ∈ {1, . . . ,m},

‖Dg̃i(x)‖ ≤ ‖id + di Dhε(g̃i(x), V0)‖‖Dg̃i−1(x)‖ ≤ (1 + di c1Mε−4)‖Dg̃i−1(x)‖ using (5.17)

≤
i∏

k=1

(
1 + dk c1Mε−4

)
‖Dg̃0(x)‖ ≤

i∏
k=1

exp
(
dk c1Mε−4

)
≤ exp

(
tic1Mε−4

)
≤ 2 (5.77)

where we used g̃0 = id, 1 + s ≤ exp(s) for s ∈ R and

exp
(
tic1Mε−4

)
≤ exp

(
δ
c5

4
(M + 1)3ε−8

)
≤ exp(1/4) ≤ 2.

We can now expand Dg̃i and Dgi as we did previously for g̃i and gi:

Dg̃i(x) = id +
i∑

k=1

dk Dhε (g̃k−1(x), V0) ◦Dg̃k−1(x) ,
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(5.17) and (5.77) implies

‖Dg̃i(x)− id‖ ≤
i∑

k=1

dk ‖Dhε (g̃k−1(x), V0)‖ ‖Dg̃k−1(x)‖ ≤ 2tic1Mε−4, (5.78)

Dgi(x) = id + ti Dhε(x, V0) = id +

i∑
k=1

dk Dhε (x, V0) .

We can then apply the mean value theorem to Dhε(·, V0), together with (5.75), (5.78) and Proposi-
tion 5.1.2 to infer

‖Dg̃i(x)−Dgi(x)‖ ≤
i∑

k=1

dk ‖Dhε (g̃k−1(x), V0) ◦Dg̃k−1(x)−Dhε (x, V0)‖

≤
i∑

k=1

dk‖Dhε(·, V0)‖∞ ‖Dg̃k−1(x)− id‖+ ‖D2hε(·, V0)‖∞ |g̃k−1(x)− x|

≤ 2ti ti−1(c1Mε−4)2 + c1Mε−4titi−1c1Mε−6

≤ 3c2
1M

2 t2i ε
−10 (5.79)

where we used ti−1 ≤ ti, this ends step1.
Step 2: we prove that ‖J·gi − J·g̃i‖∞ ≤ 3c2

1c7M
2t2i ε

−10.
Estimate (5.78) allows to use (5.40) with V = V0, f = gi and g = g̃i, together with (5.79) we obtain

‖J·gi − J·g̃i‖ ≤ c7

(
3c2

1M
2t2i ε

−10
)

= 3c2
1c7M

2t2i ε
−10 (5.80)

and we finish the proof of step 2.

By (5.73) and Lemma 1.4.3 we have Ṽε,T (ti) = (f̃i)#

(
(f̃i−1)# . . .#

(
(f̃1)#V0

))
= (g̃i)#V0, (5.79)

allows to use (5.42) with V = V0, f = gi and g = g̃i so that

∆
(
Ṽε,T (ti), Vε,T ′(ti)

)
= ∆ ((g̃i)#V0, (gi)#V0) ≤ ‖V0‖(Rn) (28‖gi − g̃i‖C1 + ‖J·gi − J·g̃i‖∞) .

By plugging (5.74) and (5.80) into the previous formula, by using ‖V0‖(Rn) ≤M , and by recalling
that c8 = 112c2

1 + 3c2
1c7, we obtain the desired result.

In the following lemma we compare the time-discrete approximate MCFs of two given vari-
folds on a small interval of time, one defined with respect to the trivial subdivision and the other
with respect to a finer subdivision of the time interval. The proof is based on Lemma 5.1.12.

Lemma 5.1.13. Let ε ∈ (0, 1), M ≥ 1. Let V0 and W0 in Vd(Rn) with ‖V0‖(Rn) ≤M ,‖W0‖(Rn) ≤M .
Let δ ≥ 0 be such that c5δ(M + 1)3 < ε8 and consider T = {ti}mi=1 a subdivision (1.1.1) of [0, δ].
Denote by Vε,T ′(t) the time-discrete approximate MCF of V0 with respect to the trivial subdivision of [0, δ]
and by Wε,T (t) the time-discrete approximate MCF of W0 with respect to T .
Then, for any i ∈ {0, 1 . . .m}:

∆(Vε,T ′(ti),Wε,T (ti)) ≤ ∆(V0,W0) exp
(
c7,M tiε

−n−7
)

+ 2c9,M t
2
i ε
−n−11 exp

(
c7,M tiε

−n−7
)

(5.81)

where c9,M = c9(M + 1)5 and c9 = 2c7(57c1c4 + c8).
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Remark 5.1.14. A particular case of (5.81) is when i = m:

∆(V (δ),W (δ)) ≤ ∆(V0,W0) exp
(
c7,Mδε

−n−7
)

+ 2c9,Mδ
2ε−n−11 exp

(
c7,Mδε

−n−7
)
. (5.82)

The last inequality will be useful in the sequel.

Proof. The assumption c5δ(M + 1)3 < ε8 implies that the subdivisions involved (T ′ and T ) satisfy
(5.34) and allows to define time-discrete approximate MCF for both subdivisions. For every i ∈
{1 . . .m}, set:

di = ti − ti−1

and define Ṽε,T (t) the auxiliary flow as in (5.73). We have by Lemma 5.1.12

∆(Vε,T ′(ti),Wε,T (ti)) ≤ ∆(Vε,T ′(ti), Ṽε,T (ti)) + ∆(Ṽε,T (ti),Wε,T (ti))

≤ c8M
3t2i ε

−10 + ∆(Ṽε,T (ti),Wε,T (ti)).
(5.83)

Now we only need to bound ∆(Ṽε,T (ti),Wε,T (ti)). Similarly to Lemma 5.1.12 we introduce the
notation f̃i = id + dihε(·, V0). We recall that for any l ∈ {0, 1 . . .m}

Ṽε,T (tl) = (id + dlhε(·, V0))# Ṽε,T (tl−1) = f̃l#Ṽε,T (tl−1)

hence,

∆(Ṽε,T (tl),Wε,T (tl)) = ∆
(
f̃l#Ṽε,T (tl−1), (id + dlhε(·,Wε,T (tl−1)))#Wε,T (tl−1)

)
by (5.43) for V = Ṽε,T (tl−1), W = Wε,T (tl−1) and ∆t = dl

∆

((
id + dlhε(·, Ṽε,T (tl−1))

)
#
Ṽε,T (tl−1), (id + dlhε(·,Wε,T (tl−1)))#Wε,T (tl−1)

)
≤ ∆(Ṽε,T (tl−1),Wε,T (tl−1))

(
1 + c7,Mdlε

−n−7
)
.

By (5.42) applied with V = Ṽε,T (tl−1), f = f̃l and g = id + dlhε(·, Ṽε,T (tl−1)), Lemma 5.1.7 and
(5.41) we assert that :

∆

((
id + dlhε(·, Ṽε,T (tl−1))

)
#
Ṽε,T (tl−1), f̃l#Ṽε,T (tl−1)

)
≤ ‖Ṽε,T (tl−1)‖(Rn)

(
28dl‖hε(·, V0)− hε(·, Ṽε,T (tl−1))‖C1 + ‖J·f̃l − J·(id + dlhε(·, Ṽε,T (tl−1)))‖∞

)
≤ 56c6dl(M + 1)2∆(Ṽε,T (tl−1), V0)ε−n−7 + c7dl(M + 1)2∆(Ṽε,T (tl−1), V0)ε−n−7

≤ 2c7dl(M + 1)2∆(Ṽε,T (tl−1), V0)ε−n−7,

(5.84)

where we used (5.35) and c7 ≥ 56c6. Finally, we have by Lemma 5.1.12

∆(V0, Ṽε,T (tl−1)) ≤ ∆(V0, Vε,T ′(tl−1)) + ∆(Vε,T ′(tl−1), Ṽε,T (tl−1))

≤ ∆(V0, Vε,T ′(tl−1)) + c8M
3t2l−1ε

−10

≤ ∆(V0, Vε,T ′(tl−1)) + c8M
3tl−1ε

−4.

(5.85)
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Using (5.42) with V = V0, f = id and g = id + tl−1hε(·, V0) combined with Proposition 5.1.2 and
(5.23)

∆(V0, Vε,T ′(tl−1)) ≤ ‖V0‖(Rn) (28‖tl−1hε(·, V0)‖C1 + ‖J·(id + tl−1hε(·, V0))− J·(id)‖∞)

≤M
(
56c1Mtl−1ε

−4 + ‖J·(id + tl−1hε(·, V0))− 1‖∞
)

from (5.23) together with (5.1.2) we infer that

‖J·(id + tl−1hε(·, V0))− 1‖∞ ≤ c4tl−1‖Dhε(·, V0)‖∞ ≤ c1c4Mtl−1ε
−4

thus

∆(V0, Vε,T ′(tl−1)) ≤M
(
56c1Mtl−1ε

−4 + c1c4Mtl−1ε
−4
)
≤ 57c1c4M

2tl−1ε
−4. (5.86)

Summing up (5.84), (5.85) and (5.86) we obtain (recalling that c9 = 2c7(57c1c4 + c8))

∆

((
id + dlhε(·, Ṽε,T (tl−1))

)
#
Ṽε,T (tl−1), f̃l#Ṽε,T (tl−1)

)
≤ 2c7dl(M + 1)2(57c1c4M

2tl−1ε
−4 + c8M

3tl−1ε
−4)ε−n−7

≤ c9dl(M + 1)5tl−1ε
−n−11.

Thus,

∆(Ṽε,T (tl),Wε,T (tl)) ≤ ∆(Ṽε,T (tl−1),Wε,T (tl−1))
(
1 + c7,Mdlε

−n−7
)

+ c9,Mdltlε
−n−11. (5.87)

Iterating 5.87 for l ∈ {1, . . . i},

∆(Ṽε,T (ti),Wε,T (ti)) ≤ ∆(V (0),W (0))

i∏
l=1

(
1 + c7,Mdlε

−n−7
)

+

i−1∑
l=0

(c9,Mdi−lti−lε
−n−11)

l−1∏
j=0

(
1 + c7,Mdi−jε

−n−7
)

= ∆(V (0),W (0)) exp
(
c7,M tiε

−n−7
)

+A.

To bound A, we note first that ti−l ≤ ti for any l ∈ {0, . . . , i} and that

l−1∏
j=0

(
1 + c7,Mdi−jε

−n−7
)
≤

i−1∏
j=0

(
1 + c7,Mdi−jε

−n−7
)

≤︸︷︷︸∑i
j=1 dj=ti

exp
(
c7,M tiε

−n−7
)
.

Therefore,

A =
i−1∑
l=0

(c9,Mdi−lti−lε
−n−11)

l−1∏
j=0

(
1 + c7,Mdi−jε

−n−7
)

≤
i−1∑
l=0

(c9,Mdi−ltiε
−n−11) exp

(
c7,M tiε

−n−7
)
≤ c9,M t

2
i ε
−n−11 exp

(
c7,M tiε

−n−7
)
.

82



This yields,

∆(Ṽε,T (ti),Wε,T (ti)) ≤ ∆(V0,W0) exp
(
c7,M tiε

−n−7
)

+ c9,M t
2
i ε
−n−11 exp

(
c7,M tiε

−n−7
)
.

Finally, from (5.83) we affirm that ∀i ∈ {0, 1 . . .m},

∆(Vε,T ′(ti),Wε,T (ti)) ≤ ∆(Vε,T ′(ti), Ṽε,T (ti)) + ∆(Ṽε,T (ti),Wε,T (ti))

≤ c8M
3t2i ε

−10 + ∆(V0,W0) exp
(
c7,M tiε

−n−7
)

+ c9,M t
2
i ε
−n−11 exp

(
c7,M tiε

−n−7
)
.

(5.88)

Therefore, noting that c9 ≥ c8 we can affirm that c9,M = c9(M + 1)5 ≥ c8M
3 and that ∀i ∈

{0, 1 . . .m},

∆(Vε,T ′(ti),Wε,T (ti)) ≤ ∆(V0,W0) exp
(
c7,M tiε

−n−7
)

+ 2c9,M t
2
i ε
−n−11 exp

(
c7,M tiε

−n−7
)
,

this finishes the proof.

In the following lemma, we use 5.1.13 to show Proposition 5.1.11 (stability with respect to
subdivision) in the special case where the two subdivisions are nested (one included in the other).

Lemma 5.1.15. Let ε ∈ (0, 1), M ≥ 1. Let V0 ∈ Vd(Rn) with ‖V0‖(Rn) ≤ M . Consider T1 = {ti}mi=1

and T2 = {sj}m
′

j=1 two subdivisions (1.1.1) of [0, 1] satisfying (5.34), assume that T1 ⊂ T2 , set δ = δ(T1).
Then, if we denote by Vε,T1(t) the time-discrete approximate MCF of V0 with respect to T1 and by Vε,T2(t)
the time-discrete approximate MCF of V0 with respect to T2. We have

∆(Vε,T1(t), Vε,T2(t)) ≤ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)

for all t ∈ [0, 1].

Proof. We set
di := ti − ti−1, ∀i ∈ {1, . . . ,m}.

Step 1: we bound ∆(Vε,T1(ti), Vε,T2(ti)) for i ∈ {0, 1 . . . ,m}.
Fix i ∈ {0, 1 . . . ,m}, for any l ∈ {1, . . . , i}, we use (5.82) on the interval [tl−1, tl] with V0 =
Vε,T1(tl−1) , W0 = Vε,T2(tl−1), T ′ being the trivial subdivision of [tl−1, tl] and T = T2 ∩ [tl−1, tl]
(where we replace δ by tl − tl−1) to obtain

∆(Vε,T1(tl), Vε,T2(tl)) ≤ ∆(Vε,T1(tl−1), Vε,T2(tl−1)) exp
(
c7,Mdlε

−n−7
)
+2c9,Md

2
l ε
−n−11 exp

(
c7,Mdlε

−n−7
)
.

(5.89)
Iterating (5.89) for l ∈ {0, 1 . . . i}we get:

∆(Vε,T1(ti), Vε,T2(ti)) ≤ ∆(Vε,T1(0), Vε,T2(0))
i∏
l=1

exp
(
c7,Mdlε

−n−7
)

+

i−1∑
l=0

(2c9,Md
2
i−lε

−n−11)

l−1∏
j=0

exp
(
c7,Mdi−jε

−n−7
)

=

i−1∑
l=0

(2c9,Md
2
i−lε

−n−11)

l−1∏
j=0

exp
(
c7,Mdi−jε

−n−7
) =: A,
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where we used ∆(Vε,T1(0), Vε,T2(0)) = ∆(V0, V0) = 0. To bound A we write

l−1∏
j=0

exp
(
c7,Mdi−jε

−n−7
)
≤

i−1∏
j=0

exp
(
c7,Mdi−jε

−n−7
)

≤︸︷︷︸∑i
j=1 dj=ti

exp
(
c7,M tiε

−n−7
)
.

Using again
∑i

j=1 dj = ti, with dj ≤ δ, we infer that

A =

i−1∑
l=0

(2c9,Md
2
i−lε

−n−11)

l−1∏
j=0

exp
(
c7,Mdi−jε

−n−7
) ≤ 2c9,M tiδε

−n−11 exp
(
c7,M tiε

−n−7
)

thus, for i ∈ {0, 1 . . .m}, we have:

∆(Vε,T1(ti), Vε,T2(ti)) ≤ 2c9,M tiδε
−n−11 exp

(
c7,M tiε

−n−7
)
. (5.90)

Step 2: we bound ∆(Vε,T1(sk), Vε,T2(sk)) for k ∈ {0, 1 . . . ,m′}.
Fix k ∈ {0, 1 . . . ,m′}, for sk ∈ T2, let i ∈ {0, 1 . . .m− 1} be such that sk ∈ [ti, ti+1] applying Lemma
5.1.13 on the interval [ti, ti+1] with V0 = Vε,T1(ti), W0 = Vε,T2(ti), T ′ being the trivial subdivision
of [ti, ti+1], T = T2 ∩ [ti, ti+1], and using (5.90)

∆(Vε,T1(sk), Vε,T2(sk)) ≤ ∆(Vε,T1(ti), Vε,T2(ti)) exp
(
c7,M (sk − ti)ε−n−7

)
+ 2c9,M (sk − ti)2ε−n−11 exp

(
c7,M (sk − ti)ε−n−7

)
≤ 2c9,M tiδε

−n−11 exp
(
c7,M tiε

−n−7
)

exp
(
c7,M (sk − ti)ε−n−7

)
+ 2c9,M (sk − ti)2ε−n−11 exp

(
c7,M (sk − ti)ε−n−7

)
.

Noting that exp
(
c7,M tiε

−n−7
)

exp
(
c7,M (sk − ti)ε−n−7

)
= exp

(
c7,Mskε

−n−7
)

and

tiδ + (sk − ti)2 ≤ δ(ti + sk − ti) ≤ δsk

therefore, for all sk ∈ T2 we have:

∆(Vε,T1(sk), Vε,T2(sk)) ≤ 2c9,Mskδε
−n−11 exp

(
c7,Mskε

−n−7
)
. (5.91)

Step 3: we bound ∆(Vε,T1(t), Vε,T2(t)) for t ∈ [0, 1].
Let t ∈ [sk, sk+1] for some k ∈ {0, 1, . . . ,m′ − 1}, applying Proposition 5.1.8 with V = Vε,T1(sk),
W = Vε,T2(sk) and ∆t = t− sk we obtain:

∆(Vε,T1(t), Vε,T2(t)) ≤ ∆
(

(id + (t− sk)hε(·, Vε,T1(sk)))# Vε,T1(sk), (id + (t− sk)hε(·, Vε,T2(sk)))# Vε,T2(sk)
)

≤ (1 + (t− sk)c7,Mε
−n−7)∆(Vε,T1(sk), Vε,T2(sk))

≤ exp
(
(t− sk)c7,Mε

−n−7
)

∆(Vε,T1(sk), Vε,T2(sk)).

From (5.91) we conclude that for all t ∈ [0, 1].

∆(Vε,T1(t), Vε,T2(t)) ≤ exp
(
(t− sk)c7,Mε

−n−7
)

2c9,Mskδε
−n−11 exp

(
c7,Mskε

−n−7
)

≤ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)

and this ends the proof of Lemma 5.1.15.
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The proof of Proposition 5.1.11 comes as a direct consequence of Lemma 5.1.15 by introducing
a union subdivision and using the triangle inequality.

proof of Proposition 5.1.11 . We start by setting c10,M = 4c9,M and T3 = T1 ∪ T2. Let Vε,T3(t) be the
time-discrete approximate MCF with respect to T3 starting from V0. By Proposition 5.1.15 we infer
that ∀t ∈ [0, 1]:

∆(Vε,T1(t), Vε,T2(t)) ≤ ∆(Vε,T1(t), Vε,T3(t)) + ∆(Vε,T3(t), Vε,T2(t))

≤ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)

+ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)

≤ 4c9,M︸ ︷︷ ︸
=c10,M

tδε−n−11 exp
(
c7,M tε

−n−7
) (5.92)

which concludes the proof of Proposition 5.1.11.

We conclude the section with the following corollary. It encompasses the previous results on
the stability of the time-discrete approximate MCF.

Corollary 5.1.16. Let ε ∈ (0, 1), M ≥ 1. Let V0, W0 be two varifolds in Vd(Rn) with ‖V0‖(Rn) ≤ M ,
‖W0‖(Rn) ≤M . Let T1 = {ti}mi=1 and T2 = {sj}m

′
j=1 be two subdivisions (1.1.1) of [0, 1] satisfying (5.34).

Let Vε,T1(t) (resp.Wε,T2(t)) be the time-discrete approximate MCF with respect to T1 (resp. T2) starting
from V0 (resp. W0).
If we set: δ = max{δ(T1), δ(T2)}, we have:

∆(Vε,T1(t),Wε,T2(t)) ≤ ∆(V0,W0) exp
(
tc7,Mε

−n−7
)

+ c10,M tδε
−n−11 exp

(
tc7,Mε

−n−7
)
,

for all t ∈ [0, 1].

Proof. We start by setting T3 = T1∪T2. Let Vε,T3(t) (resp. Wε,T3(t)) be the time-discrete approximate
MCF with respect to T3 and starting from V0 (resp. W0). By Lemma 5.1.15 we infer that: for all
t ∈ [0, 1],

∆(Vε,T1(t), Vε,T3(t)) ≤ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)
,

and,

∆(Wε,T2(t),Wε,T3(t)) ≤ 2c9,M tδε
−n−11 exp

(
c7,M tε

−n−7
)
.

By Proposition 5.1.9 we obtain:

∆(Vε,T3(t),Wε,T3(t)) ≤ exp
(
tc7,Mε

−n−7
)
∆(V0,W0).

Summing up, one deduces:

∆(Vε,T1(t),Wε,T2(t)) ≤ ∆(V0,W0) exp
(
tc7,Mε

−n−7
)

+ 4c9,M︸ ︷︷ ︸
c10,M

tδε−n−11 exp
(
tc7,Mε

−n−7
)

for all t ∈ [0, 1], this concludes the proof.
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5.2 Existence, uniqueness and properties of the limit approximate flow
when the time step tends to 0

For any given varifold of finite mass, ε ∈ (0, 1) and T a subdivision of [0, 1] we constructed a
time-discrete approximate MCF that we denoted by (Vε,T (t))t∈[0,1] (see Definition 5.1.4). The goal
of this section is to prove that, no matter how the successive finer subdivisions are chosen, the
flow converges to a unique limit (Theorem 5.2.1), we call it the approximate MCF and we denote
it by (Vε(t))t∈[0,1]. We then exhibit some properties of this limit, namely, the stability with respect
to the initial datum (Proposition 5.2.3) and the decay of the mass (Remark 5.2.7). We prove in
Proposition 5.2.5 that Vε(t) satisfies a Brakke-type inequality (referring to inequality (2.3)) with
respect to its approximate mean curvature.

5.2.1 Existence and uniqueness of a limit approximate flow

In the following theorem, we show that the time-discrete approximate MFCs starting from a given
varifold V0 of compact support converges to the same limit no matter how the time step tends to 0.
The proof is based on the uniform boundedness of the masses (see Remark 5.35) and the stability
result with respect to the subdivision (Proposition 5.1.11).

Theorem 5.2.1 (Convergence). Let ε ∈ (0, 1), M ≥ 1 and let V0 ∈ Vd(Rn) be a varifold of compact
support and satisfying ‖V0‖(Rn) ≤M . For each j ∈ N,

• let T Dj = {k 2−j}k=0,1,...,2j be the dyadic subdivision (1.1.1) of the interval [0, 1] of size δ(T Dj ) =

2−j −−−→
j→∞

0,

• let Vε,T Dj (t)t∈[0,1] be the time-discrete approximate MCF with respect to T Dj starting from V0. Note
that according to condition (5.34) in Definition 5.1.4, such a flow is well-defined for j large enough
so that c52−j ≤ (M + 1)−3ε8.

Then,

(i) there exists a family (Vε(t))t∈[0,1] in Vd(Rn) such that for any t ∈ [0, 1]:

1. ‖Vε(t)‖(Rn) ≤M + 1,

2. Vε,T Dj
(t)

∗−⇀ Vε(t),

3. ∆
(
Vε,T Dj

(t), Vε(t)
)
→ 0 as j → +∞.

(ii) If
(
Tj
)
j∈N is any other sequence of subdivisions of size δ

(
Tj
)

tending to 0, then Vε,Tj (t)t∈[0,1] (the
time-discrete approximate MCF with respect to Tj starting from V0) converges to the same family
(Vε(t))t∈[0,1] as for the dyadic subdivisions: for any t ∈ [0, 1],

Vε,Tj (t)
∗−⇀ Vε(t) and ∆

(
Vε,Tj (t), Vε(t)

)
→ 0 as j → +∞ .

In other words, there exists a unique limit flow (Vε(t))t∈[0,1] starting from V0, that we call the approximate
MCF of V0.
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Proof. Let ε ∈ (0, 1), M ≥ 1 and let V0 ∈ Vd(Rn) be a varifold with compact support and satisfying
‖V0‖(Rn) ≤M .
We start with the proof of (i). For j ∈ N, let T Dj and Vε,T Dj

be as in the statement of the theorem.
Let t ∈ [0, 1]. By construction, we know that for any t ∈ [0, 1]:

‖Vε,T Dj (t)‖(Rn) ≤M + 1.

Thus, by Banach-Alaoglu’s theorem, there exists a subsequence at(j) (depending on t) for which
the sequence Vε,T D

at(j)
(t) converges weakly-* to a certain limit denoted by Vε(t). Note that up to

this point, such a limit could depend on the extraction at and on the specific choice of the dyadic
subdivisions (T Dj )j . We first show that the whole sequence Vε,T Dj (t) (and not only the extracted
one) converges to Vε(t) as j →∞.
As V0 has compact support, there exists R0 > 0 such that sptV0 ⊂ B(0, R0)×Gd,n. Then, thanks to
Remark 5.1.5, all the varifolds we are considering hereafter are supported in the common bounded
set B

(
0, R0 + c1(M + 1)ε−2

)
×Gd,n. Applying Proposition 1.2.3, we can deduce that,

∆(Vε(t), Vε,T D
at(j)

(t)) −−−→
j→∞

0 .

Note that at(j) ≥ j and therefore the dyadic subdivision T Dat(j) is finer than T Dj . For j large enough,
so that c52−j ≤ (M + 1)−3ε8, we can apply Lemma 5.1.15 with T Dj ⊂ T Dat(j) and obtain

∆(Vε,T D
at(j)

(t), Vε,T Dj
(t)) ≤ 2c9tδjε

−n−11 exp
(
c7tε

−n−7
)

with δj = 2−j .

This implies

∆(Vε(t), Vε,T Dj
(t)) ≤ ∆(Vε(t), V T D

at(j)
(t)) + ∆(Vε,T D

at(j)
(t), Vε,T Dj

(t)) −−−→
j→∞

0.

Thus, the full sequence Vε,T Dj (t) converges to Vε(t) for each t ∈ [0, 1] in the bounded Lipschitz
topology and thus in the weakly-* topology (again thanks to Proposition 1.2.3).
We now prove (ii). Let

(
Tj
)
j∈N be a sequence of subdivisions of size δ

(
Tj
)

tending to 0. For j large
enough so that c5δ(Tj) ≤ (M+1)−3ε8, let Vε,Tj (t)t∈[0,1] be the time-discrete approximate MCF with
respect to Tj starting from V0. Let t ∈ [0, 1] and set δ̃j = max{δ(Tj), δ(T Dj )}; we apply Proposition
5.1.11 and obtain

∆(Vε,T Dj
(t), Vε,Tj (t)) ≤ c10,M tδ̃jε

−n−11 exp
(
c7,M tε

−n−7
)
−−−→
j→∞

0.

This implies that for any t ∈ [0, 1], Vε,Tj (t) converges to Vε(t) both in the bounded Lipschitz topol-
ogy and thus in the weak-* topology (again thanks to Proposition 1.2.3).
We conclude that independently of how the time step goes to 0, the limit flow exists and is unique,
we call it the approximate MCF and we will denote it by Vε(t).

Given ε ∈ (0, 1) and a subdivision T of [0, 1], we proposed in Remark 5.1.6 an alternative
definition V pc

ε,T of time-discrete approximate MCF: we recall that the difference with Vε,T lies in
the way the flow is extended from the points t0, t1, . . . , tm ∈ T of the subdivision to any t ∈
[0, 1]. While Vε,T is defined through a kind of linear interpolation between the flow at time ti and
ti+1, V pc

ε,T is set to be constant in between such subdivision times. In the following proposition,
we derive an error term estimate between both extensions and infer that they lead to the same
definition of limit flow (Vε(t))t∈[0,1].
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Proposition 5.2.2. Let ε ∈ (0, 1). Let T = {ti}mi=0 be a subdivision (1.1.1) of [0, 1] satisfying (5.34).
Let V0 ∈ Vd(Rn) of compact support and Vε,T (t) its time-discrete approximate MCF with respect to T .
Let V pc

ε,T (t) be the associated piecewise constant flow with respect to T (Remark 5.1.6). Then if we set:
δ = δ(T ), we have:

∆(Vε,T (t), V pc
ε,T (t)) ≤ c11δε

−4, ∀t ∈ [0, 1],

where c11 = (56c1 + c1c4)(M + 1)2. As a consequence, when the step of the subdivision goes to 0, V pc
ε,T (t)

converges to Vε(t) (defined in Theorem 5.2.1): for any t ∈ [0, 1],

V pc
ε,Tj (t) converges weakly-* to Vε(t) and ∆

(
V pc
ε,Tj (t), Vε(t)

)
→ 0 as j → +∞ . (5.93)

Proof. As ε and T are fixed, we denote Vε,T (t) and V pc
ε,T (t) by V (t) and V (t)pc throughout the proof.

Let t ∈ [ti, ti+1) for some i ∈ {0, . . . ,m − 1}, denote f = id + (t − ti)hε(·, V (ti)) and g = id. We
have:

∆(V (t), V pc(t)) = ∆(V (t), V (ti)) = ∆
(
f#V (ti), g#V (ti))

)
.

Using (5.17) we can check that (noting that ‖V (ti)‖ ≤M + 1)

‖Df −Dg‖∞ = (t− ti)‖Dhε(·, V (ti))‖∞ ≤ 2c1(t− ti)(M + 1)ε−4

we then can apply (5.42) with V = V (ti), to obtain

∆
(
f#V (ti), V (ti)

)
≤ ‖V (ti)‖(Rn) (28(t− ti)‖hε(·, V (ti))‖C1 + ‖J·f − 1‖∞) . (5.94)

Therefore, by ‖V (ti)‖(Rn) ≤M + 1, Proposition 5.1.2 and (5.23) we infer that

∆(Vε,T (t), V pc
ε,T (t)) ≤ 56(M + 1)2c1(t− ti)ε−4 + (M + 1)2c1c4(t− ti)ε−4

≤ (56c1 + c1c4)(M + 1)2(t− ti)ε−4 ≤ c11δε
−4

(5.95)

where we set c11 = (56c1 + c1c4)(M + 1)2, this concludes the proof.

Thereafter (Vε(t))t∈[0,1] denotes the approximate MCF starting from V0 as defined in Theo-
rem 5.2.1. We now investigate the properties of this flow, starting with the stability with respect to
the initial varifold.

Proposition 5.2.3. Let ε ∈ (0, 1),M ≥ 1. Let V0, W0 in Vd(Rn) satisfying ‖V0‖(Rn) ≤M, ‖W0‖(Rn) ≤
M and both compactly supported. Then, for all t ∈ [0, 1],

∆(Vε(t),Wε(t)) ≤ ∆(V0,W0) exp
(
c7,M t ε−n−7

)
,

where Vε (resp. Wε) is the approximate MCF starting from V0 (resp. W0).

Proof. We fix a sequence of subdivisions (Tj)j∈N with time step δj → 0 as j →∞ (we can take the
dyadic subdivisions for instance). Let

(
Vε,Tj (t)

)
t∈[0,1]

(resp.
(
Wε,Tj (t)

)
t∈[0,1]

) be the time-discrete
approximate MCF with respect to Tj starting from V0 (resp. W0). Let j be large enough so that
(5.34) holds: c5δj ≤ (M + 1)−3ε8, then we can simply apply Proposition 5.1.9 and obtain for all
t ∈ [0, 1],

∆(Vε,Tj (t),Wε,Tj (t)) ≤ ∆(V0,W0) exp
(
c7,M t ε−n−7

)
,
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and therefore, by the triangle inequality and Theorem 5.2.1, letting j tend to∞, we can conclude
that

∆(Vε(t),Wε(t)) ≤ ∆(Vε(t), Vε,Tj (t)) + ∆(Vε,Tj (t),Wε,Tj (t)) + ∆(Wε,Tj (t),Wε(t))

≤ ∆(V0,W0) exp
(
c7,M t ε−n−7

)
.

5.2.2 Equality à la Brakke

In Proposition 5.2.5, we show a Brakke-type equality for the flow (Vε(t))t∈[0,1] with respect to its
approximate mean curvature. The proof consists of taking the limit in inequality (5.97) which
results from the expansion of the push-forward varifold formula (5.24) and Theorem 5.2.1. We
conclude the section with the decay property of mass t 7→ ‖Vε(t)‖(Rn), which follows directly
from (5.96) and (5.25).
We first introduce the following lemma on the regularity of the weighted first variation with re-
spect to the varifold.

Lemma 5.2.4. Let ϕ ∈ C2(Rn,R+), X ∈ C2(Rn,Rn) and V , W ∈ Vd(Rn) of finite mass. Then

|δ(V, ϕ)(X)− δ(W,ϕ)(X)| ≤ 2n‖ϕ‖C2‖X‖C2∆(V,W ) .

Proof. Let ϕ ∈ C1(Rn,R+), X ∈ C2(Rn,Rn) and set Θ(x, S) := ϕ(x) divS X(x) +∇ϕ(x) ·X(x).
From Definition (1.13) one has

|δ(V, ϕ)(X)− δ(W,ϕ)(X)| ≤ Lip(Θ)∆(V,W ).

It is only left to prove that Lip(Θ) ≤ n‖ϕ‖C1‖X‖C2 .
Let x, y ∈ Rn and (S, T ) ∈ Gd,n, we have

|ϕ(x) divS X(x)− ϕ(y) divT X(y)| ≤ |ϕ(x)− ϕ(y)||divS X(x)|+ |ϕ(y)| |divS X(x)− divS X(y)|
+ |ϕ(y)||divS X(y)− divT X(y)| := A+B + C.

We recall that divS X = tr(S ◦DX). For the first term we have by Lemma 5.5.1

A ≤ n‖∇ϕ‖∞‖DX(x)‖|x− y| ≤ n‖∇ϕ‖∞‖DX‖∞|x− y|,
B ≤ n‖ϕ‖∞‖S‖‖DX(x)−DX(y)‖ ≤ n‖ϕ‖∞‖D2X‖∞|x− y|, and
C ≤ n‖ϕ‖∞‖DX(y)‖‖S − T‖ ≤ n‖ϕ‖∞‖DX‖∞‖S − T‖.

We carry on with the Lipschitz constant of the second term of Θ, we have

Lip(∇ϕ ·X) ≤ ‖∇2ϕ‖∞‖X‖∞ + ‖∇ϕ|∞‖DX‖∞.

Finally, from the previous estimates we have

Lip(Θ) ≤ (n+ 1)‖ϕ‖C2‖X‖C2 ≤ 2n‖ϕ‖C2‖X‖C2 .
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Proposition 5.2.5. Let ε ∈ (0, 1),M ≥ 1. Let V0 in Vd(Rn) of compact support with ‖V0‖(Rn) ≤M . Let
(Vε(t))t∈[0,1] be the approximate MCF starting from V0. For any ϕ ∈ C1(Rn × [0, 1],R+) and 0 ≤ a ≤
b ≤ 1 we have

‖Vε(b)‖(ϕ(·, b))− ‖Vε(a)‖(ϕ(·, a)) =

ˆ b

a
δ(Vε(t), ϕ(·, t))(hε(·, Vε(t))) dt+

ˆ b

a
‖Vε(t)‖(∂tϕ(·, t)) dt.

(5.96)

Proof. Let ε ∈ (0, 1), M ≥ 1 and V0 ∈ Vd(Rn) of compact support satisfying ‖V0‖(Rn) ≤ M . Let
T = {ti}mi=1 be a uniform subdivision of [0, 1] of size ∆t satisfying (5.34). Let (V pc

ε,T (t))t∈[0,1] be the
piecewise constant approximate MCF with respect to to T starting from V0. We first prove that
(5.96) holds for (V pc

ε,T (t))t∈[0,1] up to an error term of order ∆t. More precisely, we prove in Steps 1

and 2 that ∃C > 0 (only depending on n and M ) such that for any ϕ ∈ C2(Rn × [0, 1],R+) and
0 ≤ a ≤ b ≤ 1 we have∣∣∣∣‖V pc

ε,T (b)‖(ϕ(·, b))− ‖V pc
ε,T (a)‖(ϕ(·, a))−

ˆ b

a
δ(V pc

ε,T (t), ϕ(·, t))(hε(·, V pc
ε,T (t))) dt

−
ˆ b

a

ˆ
Rn
∂tϕ(·, t) d‖V pc

ε,T (t)‖dt
∣∣∣∣ ≤ C‖ϕ‖C2∆tε−8 . (5.97)

In Step 3, recalling that (V pc
ε,T (t))t∈[0,1] converges to (Vε(t))t∈[0,1] when considering subdivisions

T whose size tends to 0, we take the limit in (5.97) and establish (5.96) for ϕ of regularity C2. We
conclude the proof of Proposition 5.2.5 applying density of C2(Rn×[0, 1],R+) in C1(Rn×[0, 1],R+)

in Step 4. Remark 5.1.5 states that
⋃

t∈[0,1]

sptV pc
ε,T (t) is contained in a compact set, denote it by Kε,

for ε fixed independently of the subdivision T , hence
⋃

t∈[0,1]

sptVε(t) is contained in Kε as well. In

the proof, the Ck-norms (k ∈ {1, 2}) of the test functions ψ and ϕ are implicitly taken with respect
to the setKε, hence are finite. In both Steps 1 and 2, T and ε are fixed and we denote for simplicity
V (t) := V pc

ε,T (t).
Step 1: We prove the inequality (5.97) for a, b ∈ T : let ` ∈ {0, 1, . . . ,m − 1} and ϕ ∈ C2(Rn ×
[0, 1],R+).
We can apply (5.24) in Proposition 5.1.3 to a spatial test function ψ ∈ C2(Rn,R+). We recall that
the piecewise constant MCF coincides with the time discrete approximate MCF at the points of
the subdivision and furthermore, f#V (t`) = V (t`+1) for f as in (5.24). Therefore,∣∣∣‖V (t`+1)‖(ψ)− ‖V (t`)‖(ψ)−∆t δ(V (t`), ψ)(hε(·, V (t`)))

∣∣∣ ≤ c5(M + 1)3‖ψ‖C2(∆t)2ε−8.

We now recall that V (t) is piecewise constant and thus, for all t ∈ (t`, t`+1), V (t) = V (t`) and
ˆ t`+1

t`

δ(V (t), ψ)(hε(·, V (t))) dt = ∆t δ(V (t`), ψ)(hε(·, V (t`)))

so that taking ψ = ϕ(·, t`+1), we obtain∣∣∣∣‖V (t`+1)‖(ϕ(·, t`+1))− ‖V (t`)‖(ϕ(·, t`+1))−
ˆ t`+1

t`

δ(V (t), ϕ(·, t`+1))(hε(·, V (t))) dt

∣∣∣∣
≤ c5(M + 1)3‖ϕ(·, t`+1)‖C2(∆t)2ε−8 . (5.98)
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Applying the mean value theorem to ϕ and∇ϕ:

ˆ t`+1

t`

‖ϕ(·, t)− ϕ(·, t`+1)‖C1 dt ≤
ˆ t`+1

t`

‖ϕ‖C2 |t− t`+1| dt ≤ ‖ϕ‖C2(∆t)2 ,

and then using Remark 1.4.5, Proposition 5.1.2 and (5.98), we have

∣∣∣‖V (t`+1)‖(ϕ(·, t`+1))− ‖V (t`)‖(ϕ(·, t`+1))−
ˆ t`+1

t`

δ(V (t), ϕ(·, t))(hε(·, V (t))) dt
∣∣∣

≤ c5(M + 1)3‖ϕ(·, t`+1)‖C2(∆t)2ε−8 +

ˆ t`+1

t`

|δ(V (t), ϕ(·, t)− ϕ(·, t`))(hε(·, V (t)))| dt

≤ c5(M + 1)3‖ϕ‖C2(∆t)2ε−8 +

ˆ t`+1

t`

n‖hε(·, V (t))‖C1‖V (t)‖(Rn)‖ϕ(·, t)− ϕ(·, t`)‖C1 dt

≤ c5(M + 1)3‖ϕ‖C2(∆t)2ε−8 + nc1(M + 1)2‖ϕ‖C2(∆t)2ε−4

≤ (c5 + nc1)(M + 1)3‖ϕ‖C2(∆t)2ε−8. (5.99)

Writing for x ∈ Rn, ϕ(x, t`+1) − ϕ(x, t`) =

ˆ t`+1

t`

∂tϕ(x, t) dt and integrating with respect to

‖V (t`)‖ = ‖V (t)‖ for all t ∈ (t`, t`+1),

‖V (t`)‖(ϕ(·, t`+1))− ‖V (t`)‖(ϕ(·, t`)) =

ˆ
x∈Rn

ˆ t`+1

t`

∂tϕ(x, t) dt d‖V (t`)‖(x)

=

ˆ t`+1

t`

ˆ
x∈Rn

∂tϕ(x, t) d‖V (t`)‖(x) dt =

ˆ t`+1

t`

‖V (t)‖ (∂tϕ(·, t)) dt . (5.100)

We can now combine (5.99) and (5.100) to obtain that for ` ∈ {0, 1, . . . ,m− 1},∣∣∣∣‖V (t`+1)‖(ϕ(·, t`+1))− ‖V (t`)‖(ϕ(·, t`))−
ˆ t`+1

t`

δ(V (t), ϕ(·, t))(hε(·, V (t))) dt

−
ˆ t`+1

t`

‖V (t)‖(∂tϕ(·, t)) dt
∣∣∣∣

=

∣∣∣∣‖V (t`+1)‖(ϕ(·, t`))− ‖V (t`)‖(ϕ(·, t`))−
ˆ t`+1

t`

δ(V (t), ϕ(·, t))(hε(·, V (t))) dt

∣∣∣∣
≤ (c5 + nc1)(M + 1)3‖ϕ‖C2(∆t)2 ε−8 ,

which is (5.97) for a = t` and b = t`+1. Let now a = tp ≤ tq = b, note that if p = q, (5.97)
is trivial and otherwise, summing up the previous inequality for ` ∈ {p, . . . , q − 1} and using
(q − p)∆t = tq − tp ≤ 1 leads to the inequality (5.97), which concludes the proof of Step 1 (case
where a, b ∈ T ).
Step 2: We recover the approximate Brakke-type equality (5.97) for any arbitrary a, b. Let 0 ≤
a < b ≤ 1 and ϕ ∈ C2(Rn × [0, 1],R+). Let the points tp, tq ∈ T be such that tp ≤ a < tp+1 and
tq ≤ b < tq+1. We then have |a − tp| < ∆t and |tq − b| < ∆t, and recalling that V (t) is piecewise
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constant on intervals of the form [t`, t`+1), we also have V (a) = V (tp) and V (b) = V (tq) so that∣∣∣‖V (b)‖(ϕ(·, b))− ‖V (a)‖(ϕ(·, a))− ‖V (tq)‖(ϕ(·, tq)) + ‖V (tp)‖(ϕ(·, tp))
∣∣∣

=
∣∣∣‖V (tq)‖(ϕ(·, b)− ϕ(·, tq))− ‖V (tp)‖(ϕ(·, a)− ϕ(·, tp))

∣∣∣
≤ 2(M + 1)‖ϕ‖C1∆t (5.101)

thanks to the mean value theorem applied to ϕ.
Furthermore, for all t ∈ [0, 1], using Remark 1.4.5 and Proposition 5.1.2, we have

|δ(V (t), ϕ(·, t))(hε(·, V (t)))| ≤ n‖hε(·, V (t)))‖C1(M + 1)‖ϕ(·, t)‖C1 ≤ nc1(M + 1)2‖ϕ‖C1 ε−4

and therefore∣∣∣∣∣
ˆ b

a
δ(V (t), ϕ(·, t))(hε(·, V (t))) dt−

ˆ tq

tp

δ(V (t), ϕ(·, t))(hε(·, V (t))) dt

∣∣∣∣∣
≤ (|tp − a|+ |tq − b|︸ ︷︷ ︸

≤2∆t

) sup
t∈[0,1]

|δ(V (t), ϕ)(hε(·, V (t)))| ≤ 2nc1(M + 1)2‖ϕ‖C1∆t ε−4 . (5.102)

We are left with estimating∣∣∣∣∣
ˆ b

a
‖V (t)‖(∂tϕ(·, t)) dt−

ˆ tq

tp

‖V (t)‖(∂tϕ(·, t)) dt

∣∣∣∣∣ ≤ 2(M + 1)‖ϕ‖C1∆t . (5.103)

We can complete the proof of Step 2 and establish (5.97) by combining (5.101) and (5.102) and
(5.103) together with Step 1.
Step 3: We show (5.96) restricted to C2 test functions.
We first recall that the approximate MCF (Vε(t))t∈[0,1] starting from V0 can be obtained as the limit
flow (j → ∞) of any time-discrete approximate MCF (Vε,Tj (t))t for subdivisions Tj of size δ(Tj)
tending to 0, as stated in Theorem 5.2.1. We can thus choose a sequence of uniform subdivisions
Tj of size ∆tj := δ(Tj) −−−→

j→∞
0, and we fix the subdivisions Tj = {t`,j}`=0,...,mj hereafter, we will

write t` instead of t`,j in the proof in order to lighten notations. We additionally recall that the
piecewise constant flow (V pc

ε,Tj (t))t introduced in Remark 5.1.6 converges as well to (Vε(t))t thanks
to Proposition 5.2.2 and as it is more convenient in this proof, we work with (V pc

ε,Tj (t))t. For the
sake of lightening the notation we will denote Vj(t) := V pc

ε,Tj (t) hereafter.
We carry on with the proof of Step 3, let ϕ ∈ C2(Rn × [0, 1],R+) and 0 ≤ a < b ≤ 1, from (5.97) we
have for any j ∈ N,∣∣∣∣‖Vj(b)‖(ϕ(·, b))− ‖Vj(a)‖(ϕ(·, a))−

ˆ b

a
δ(Vj(t), ϕ(·, t))(hε(·, Vj(t))) dt

−
ˆ b

a
‖Vj(t)‖(∂tϕ(·, t)) dt

∣∣∣∣ ≤ C‖ϕ‖C2∆t ε−8 . (5.104)

When j goes to∞we know thanks to (5.93) in Proposition 5.2.2 that for all t ∈ [0, 1],

Vj(t) converges weakly-* to Vε(t) and ∆(Vj(t), Vε(t)) −−−→
j→∞

0 .
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As a first consequence, we obtain that

‖Vj(b)‖(ϕ(·, b)) −−−→
j→∞

‖Vε(b)‖(ϕ(·, b)) and ‖Vj(a)‖(ϕ(·, a)) −−−→
j→∞

‖Vε(a)‖(ϕ(·, a)) . (5.105)

We recall that ‖Vε(t)‖(Rn) ≤M + 1 and thanks to Proposition 5.1.2 and Lemma 5.1.7, we have for
all t ∈ [0, 1],

‖hε(·, Vε(t))‖C2 ≤ 3c1(M+1)ε−6 and ‖hε(·, Vj(t))−hε(·, Vε(t))‖C1 ≤ 2c6(M+1)ε−n−7∆(Vj(t), Vε(t))

and therefore, applying Remark 1.4.5, Lemma 5.2.4 and Lemma 5.1.7 (with V = Vj(t) and W =
Vε(t)) we infer∣∣∣δ(Vj(t), ϕ(·, t))(hε(·, Vj(t)))− δ(Vε(t), ϕ(·, t))(hε(·, Vε(t)))

∣∣∣
≤n(M + 1)‖ϕ‖C1 ‖hε(·, Vj(t))− hε(·, Vε(t))‖C1 + 2n(M + 1)‖ϕ‖C1 ‖hε(·, Vε(t))‖C2 ∆(Vj(t), Vε(t))

≤ (6c1 + 2c6)n(M + 1)2‖ϕ‖C1 ε−n−7 ∆(Vj(t), Vε(t)) .

Integrating the previous inequality, we obtain by dominated convergence, noting that for all t,
∆(Vj(t), Vε(t)) ≤ 2(M + 1):

∣∣∣∣ˆ b

a
δ(Vj(t), ϕ(·, t))(hε(·, Vj(t))) dt−

ˆ b

a
δ(Vε(t), ϕ(·, t))(hε(·, Vε(t))) dt

∣∣∣∣ −−−→
j→∞

0 . (5.106)

It remains to let j tend to∞ in the following term

lim
j→∞

ˆ b

a
‖Vj(t)‖(∂tϕ(·, t)) dt =

ˆ b

a
‖Vε(t)‖(∂tϕ(·, t)) dt (5.107)

where the convergence holds by dominated convergence: for each t ∈ [0, 1] the weakly-* conver-
gence of Vj(t) to Vε(t) implies that limj→∞ ‖Vj(t)‖(∂tϕ(·, t)) = ‖Vε(t)‖(∂tϕ(·, t)) and the integrands
are uniformly bounded by the constant ‖ϕ‖C1(M + 1).
We can eventually let j tend to +∞ in (5.104) and conclude the proof of Step 3 (i.e. (5.96) for all C2

test function ϕ) combining the convergence of the 3 terms given by (5.105), (5.106) and (5.107) in
the l.h.s. while the r.h.s. tends to 0.
Step 4: It remains to check that we can pass from C2 to C1 test functions ϕ in (5.96) to conclude
the proof (5.96) for C1 test functions.
Let ϕ ∈ C1(Rn × [0, 1],R+) and apply density of C2(Rn × [0, 1],R+) in C1(Rn × [0, 1],R+) to have
a sequence of functions (ϕk)k∈N such that for all k, ϕk ∈ C2(Rn × [0, 1],R+) and

‖ϕ− ϕk‖C1 −−−→
k→∞

0 .

Thanks to Step 3, we know that (5.96) holds for C2 functions and thus for all k ∈ N,

‖Vε(b)‖(ϕk(·, b))−‖Vε(a)‖(ϕk(·, a)) =

ˆ b

a
δ(Vε(t), ϕk(·, t))(hε(·, Vε(t))) dt+

ˆ b

a
‖Vε(t)‖(∂tϕk(·, t)) dt

(5.108)
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and it remains to check that we can let k tend to +∞, which basically follows from the fact that
each term involved in (5.96) is linear continuous with respect to ϕ ∈ C1(Rn × [0, 1],R+) endowed
with ‖ · ‖C1 . Indeed, we first note that for any t ∈ [0, 1],∣∣∣‖Vε(t)‖(ϕk(·, t))− ‖Vε(t)‖(ϕ(·, t))

∣∣∣ ≤ (M + 1)‖ϕk(·, t)− ϕ(·, t)‖∞ ≤ (M + 1)‖ϕ− ϕk‖C1

and consequently,

lim
k→∞

‖Vε(b)‖(ϕk(·, b)) = ‖Vε(b)‖(ϕ(·, b)) and lim
k→∞

‖Vε(a)‖(ϕk(·, a)) = ‖Vε(a)‖(ϕ(·, a)) . (5.109)

Similarly, for all t ∈ [0, 1],∣∣∣‖Vε(t)‖(∂tϕk(·, t))− ‖Vε(t)‖(∂tϕ(·, t))
∣∣∣ ≤ (M + 1)‖∂tϕk(·, t)− ∂tϕ(·, t)‖∞ ≤ (M + 1)‖ϕ− ϕk‖C1

and consequently,

lim
k→∞

ˆ b

a
‖Vε(t)‖(∂tϕk(·, t)) dt =

ˆ b

a
‖Vε(t)‖(∂tϕ(·, t)) dt . (5.110)

We can apply Remark 1.4.5 and Proposition 5.1.2 to the remaining term:∣∣∣δ(Vε(t), ϕk(·, t))(hε(·, Vε(t)))− δ(Vε(t), ϕ(·, t))(hε(·, Vε(t)))
∣∣∣

≤ n(M + 1) ‖hε(·, Vε(t))‖C1 ‖ϕk(·, t)− ϕ(·, t)‖C1 ≤ 2c1n(M + 1)2ε−4‖ϕ− ϕk‖C1

and consequently,

lim
k→∞

ˆ b

a
δ(Vε(t), ϕk(·, t))(hε(·, Vε(t))) dt =

ˆ b

a
δ(Vε(t), ϕ(·, t))(hε(·, Vε(t))) dt . (5.111)

We eventually conclude the proof of Step 4 and hence of the Proposition 5.2.5 thanks to (5.108),
(5.109), (5.110) and (5.111).

The following result stems from the proof of Proposition 5.2.5. We will use it later to prove
Lemma 6.2.2 on the approximate avoidance principle.

Corollary 5.2.6. Let ε ∈ (0, 1),M ≥ 1. Let V0 in Vd(Rn) of compact support with ‖V0‖(Rn) ≤M . Let T
be a subdivision of [0, 1] satisfying (5.34). Let (V pc

ε,T (t))t∈[0,1] be the piecewise constant approximate MCF
starting from V0. For any ϕ ∈ C1(Rn × [0, 1],R+) and 0 ≤ a ≤ b ≤ 1 we have∣∣∣∣‖V pc

ε,T (b)‖(ϕ(·, b))− ‖V pc
ε,T (a)‖(ϕ(·, a))−

ˆ b

a
δ(V pc

ε,T (t), ϕ(·, t))(hε(t)) dt

−
ˆ b

a

ˆ
Rn
∂tϕ(·, t) d‖V pc

ε,T (t)‖dt
∣∣∣∣ ≤ c12‖ϕ‖C2∆tε−8.

(5.112)

We conclude this section by noting a straightforward though important consequence of the
Brakke-type equality we established in Proposition 5.2.5: the mass t 7→ ‖Vε(t)‖(Rn) is non-increasing
along the flow.
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Remark 5.2.7. Let ε ∈ (0, 1), let V0 ∈ Vd(Rn) with ‖V0‖(Rn) ≤M and assume that V0 is compactly
supported. Let (Vε(t))t∈[0,1] be the approximate MCF starting from V0. Then, for all 0 ≤ a < b ≤ 1,

‖Vε(b)‖(Rn)− ‖Vε(a)‖(Rn) = −
ˆ b

a

ˆ
Rn

|(Φε ∗ δVε(t))(y)|2

(Φε ∗ ‖Vε(t)‖)(y) + ε
dy dt ≤ 0 .

In particular,
‖Vε(t)‖(Rn) ≤ ‖V0‖(Rn), ∀t ∈ [0, 1], (5.113)

and ˆ 1

0

ˆ
Rn

|(Φε ∗ δVε(t))(y)|2

(Φε ∗ ‖Vε(t)‖)(y) + ε
dy dt ≤ ‖V0‖(Rn).

Indeed, let 0 ≤ a < b ≤ 1, applying Proposition 5.2.5 with the constant test function ϕ : (y, t) 7→
1 ∈ C1(Rn × [0, 1],R+) we have ∂tϕ = 0, δ(Vε(t), ϕ(·, t)) = δVε(t) (see (1.13)) and then using (5.25)
in Proposition 5.1.3, we infer

‖Vε(b)‖(Rn)− ‖Vε(a)‖(Rn) =

ˆ b

a
δVε(t) (hε(·, Vε(t))) dt = −

ˆ b

a

ˆ
Rn

|(Φε ∗ δVε(t))(y)|2

(Φε ∗ ‖Vε(t)‖)(y) + ε
dy dt.

5.3 Convergence of the approximate mean curvature flows (as ε → 0),
spacetime Brakke flows

For a varifold V0 ∈ Vd(Rn) of compact support, we constructed an approximate MCF (Vε(t))t∈[0,1]

(Theorem 5.2.1) as the limit of a time-discrete approximate MCF (Definition 5.1.4) when the time
step of the subdivision goes to 0 for a fixed ε. In this section we investigate the behaviour of
(Vε(t))t∈[0,1] when ε→ 0 and the properties of the limit.
Following the works of Brakke and Kim & Tonegawa, one can prove the convergence, up to extrac-
tion independently of t, of (‖Vε(t)‖)t∈[0,1] to a limit measure µ(t) for all t ∈ [0, 1]. The convergence
is first established for a common sequence (εj)j for all dyadic numbers of [0, 1] thanks to the uni-
form boundedness of the mass and a diagonal extraction argument. Then it extends to all t ∈ [0, 1]
using the continuity property of t 7→ ‖Vε(t)‖. The previous procedure does not work for the mea-
sures (Vε(t))t∈[0,1] because of the lack of the continuity property. This issue is very common when
studying the compactness of Brakke-type flows (cf. for instance [46, Theorem 3.7]). To circumvent
this issue, we consider the tensor product measure Vε(t)⊗ dt.

In section 5.3.1, we introduce the notions of spacetime mean curvature and spacetime Brakke
flow and list some of their properties. In section 5.3.2, we prove that the measures Vε(t) ⊗ dt
converges due to uniform boundedness of the mass in ε, up to an extraction, to a limit measure
denoted by λ. We prove that λ has a bounded spacetime mean curvature in L2, and that λ is a
spacetime Brakke flow given that its Rn ×Gd,n-component is rectifiable.

We introduce as in [36] classes of test functions and vector fields that are suitable for studying
the behaviour of the approximate MCFs. For j ∈ N we define

Aj := {ϕ ∈ C2(Rn;R+) : ϕ(x) ≤ 1, |∇ϕ(x)| ≤ jϕ(x), ‖∇2ϕ(x)‖ ≤ jϕ(x) for allx ∈ Rn},

Bj := {g ∈ C2(Rn;Rn) : |g(x)| ≤ j, ‖∇g(x)‖ ≤ j, ‖∇2g(x)‖ ≤ j for allx ∈ Rn and ‖g‖L2(Rn) ≤ j}.
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5.3.1 Spacetime mean curvature and spacetime Brakke flows

Definition 5.3.1 (Spacetime mean curvature). Let β be a Radon measure on Rn ×Gd,n × [0, 1].

• We define the first variation of β: for any vector field X ∈ C1
c(Rn × [0, 1],Rn),

δβ(X) :=

ˆ 1

0

ˆ
Rn×Gd,n

divS X(y, t)dβ(y, S, t).

• We introduce the spacetime mass ‖β‖ of β: ‖β‖ := Π#β is a Radon measure in Rn × [0, 1], where
Π : Rn ×Gd,n × [0, 1]→ Rn × [0, 1] is the canonical projection.

• If in addition, δβ is bounded in the Cc(Rn×[0, 1],Rn)–topology, we say that β has bounded first vari-
ation and then by Riesz representation theorem δβ is identified with a vector-valued Radon measure
(also denoted by δβ)

δβ(X) =

ˆ
Rn×[0,1]

X · dδβ ∀X ∈ C(Rn × [0, 1],Rn) .

In this case, thanks to Radon Nikodym decomposition, we can assert that there exists a Radon mea-
sure (δβ)s singular with respect to ‖β‖ and h(·, ·, β) ∈ L1(Rn × [0, 1],Rn, ‖β‖) that we call the
spacetime mean curvature, satisfying δβ = −h‖β‖+ (δβ)s that is:

δβ(X) := −
ˆ 1

0

ˆ
Rn
h(y, t, β) ·X(y, t)d‖β‖(y, t) + (δβ)s(X), (5.114)

for any X ∈ Cc(Rn × [0, 1],Rn).

The following remark, and more precisely (5.115), justifies the consistency of Definition 5.3.1
with respect to the usual first variation and mean curvature of varifolds, considering the case
where β = W (t)⊗ dt for a family of varifolds (W (t))t with bounded first variation.

Remark 5.3.2. Let (W (t))t∈[0,1] be a family of d–varifolds with bounded variation for a.e t ∈ [0, 1],
and write for a.e t ∈ [0, 1],

δW (t) = −h(·,W )‖W (t)‖+ (δW (t))s with h(·,W (t)) ∈ L1(Rn, ‖W (t)‖) and (δW (t))s ⊥ ‖W (t)‖ .

Let β := W (t) ⊗ dt, and we write ‖β‖ = ‖W (t)‖ ⊗ dt, δβ = δW (t) ⊗ dt. Assume that β has a
bounded first variation in the sense of Definition 5.3.1, then

h(y, t, β) = h(y,W (t)) for ‖β‖–a.e (y, t) ∈ Rn × [0, 1]. (5.115)

Indeed, we have for any X ∈ C1
c(Rn × [0, 1],Rn)

δβ(X) =

ˆ 1

t=0

(ˆ
Rn×Gd,n

divS X(y, t) dW (t)(y, S)

)
dt =

ˆ 1

t=0
δW (t)(X) dt

= −
ˆ 1

0

ˆ
Rn
h(y,W (t)) ·X(y, t) d‖W (t)‖(y)dt+

ˆ 1

0
(δW (t))s(X) dt.

= −
ˆ
Rn×[0,1]

h(y,W (t)) ·X(y, t)d‖β‖(y, t) +

ˆ 1

0
(δW (t))s(X) dt .
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We finally obtain δβ = −h(·,W (t))‖β‖ + (δW (t))s ⊗ dt. As (δW (t))s is singular with respect to
‖W (t)‖ for a.e t ∈ [0, 1] implies that (δW (t))s ⊗ dt is singular with respect to ‖W‖ ⊗ dt = ‖β‖
(Lemma 5.3.3), (5.115) follows from the uniqueness of the Radon measure decomposition (up to a
set of zero measure).

Lemma 5.3.3. Let (αt)t∈[0,1] and (βt)t∈[0,1] be two families of measures on Rn such that αt ⊥ βt for a.e
t ∈ [0, 1]. Then, αt ⊗ dt ⊥ βt ⊗ dt.

Proof. For a.e t ∈ [0, 1], let At be such that sptαt ⊂ At and βt (sptβt \Act) = 0. We know that
sptαt ⊗ dt ⊂

⋃
t∈[0,1](At × {t}) and

(βt ⊗ dt)

spt(βt ⊗ dt) \ (
⋃

t∈[0,1]

Act × {t})

 = 0

thus,

(βt ⊗ dt)

spt(βt ⊗ dt) \ (
⋃

t∈[0,1]

At × {t})c
 = 0,

and this proves the lemma.

Notice that
(⋃

t∈[0,1](At × {t})
)c

=
⋃
t∈[0,1](sptAt × {t})c, this finishes the proof.

We now give the definition of spacetime Brakke flows.

Definition 5.3.4. (Spacetime Brakke flows) Let λ be a finite Radon measure on Rn × Gd,n × [0, 1]. λ is
called a spacetime Brakke flow if:

(i) There exist (µ(t))t∈[0,1], a family of Radon measures on Rn, ∀t ∈ [0, 1], we call it the mass measure of
λ, and ν(x,t) a family of probability measures for (x, t) ∈ Rn× [0, 1] such that λ = µ(t)⊗ ν(x,t)⊗ dt.

(ii) δλ is bounded and (δλ)s = 0.

(iii) (Integral Brakke inequality). For any ϕ ∈ C1
c (Rn × [0, 1],R+), 0 ≤ t1 ≤ t2 ≤ 1 we have

µ(t2)(ϕ(·, t2))−µ(t1)(ϕ(·, t1)) ≤ −
ˆ t2

t1

ˆ
Rn
ϕ(y, t)|h(y, t, λ)|2 dµ(t)(y)dt

+

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇ϕ(y, t)) · h(y, t, λ) dλ(y, S, t) +

ˆ t2

t1

ˆ
Rn
∂tϕ(·, t) dµ(t)dt

(5.116)

where h(·, ·, λ) is the spacetime mean curvature of λ. We say that λ starts from V0 = µ(0)⊗ ν(x,0).

Remark 5.3.5. We give a remark on the definition of the spacetime Brakke flow and two important
direct consequences:

(i) One could assume only that λ = V (t) ⊗ dt, with (V (t))t∈[0,1] being a family of measures on
Rn × Gd,n. Actually, using Young’s disintegration theorem [5, Theorem 2.28] we infer that
there exists a family of probability measures on Gd,n,

(
ν(x,t)

)
(x,t)

, such that:

V (t) = ‖V (t)‖ ⊗ ν(x,t),
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(ii) (Mass decay)

µ(t2)(Rn) ≤ µ(t1)(Rn) ≤ µ(0)(Rn) for all 0 ≤ t1 ≤ t2 ≤ 1. (5.117)

(iii) (L2 bound) h ∈ L2(‖λ‖) and,

ˆ 1

0

ˆ
Rn
|h(y, t, λ)|2 dµ(t)(y)dt ≤ µ(0)(Rn) = ‖V0‖(Rn).

Proof of (ii) and (iii). Define for every r ∈ R+, a C1(Rn,R+) function as :

ϕr(x) =

{
1 x ∈ Br,
0 x ∈ Bc

3r,

and ‖∇ϕr‖∞ ≤ r−1. Plugging ϕr in (5.116) we obtain (denoting h := h(·, ·, λ) for simplicity)

µ(t2)(ϕr)− µ(t1)(ϕr) ≤ −
ˆ t2

t1

ˆ
Rn
ϕr|h|2 dµ(t)dt+

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇ϕr) · h dλ

≤ −
ˆ t2

t1

ˆ
Br

|h|2 dµ(t)dt+ r−1‖h‖L1(d‖λ‖).

We now let r → +∞, we obtain

µ(t2)(Rn) + lim
r→+∞

ˆ t2

t1

ˆ
Br

|h|2 dµ(t)dt ≤ µ(t1)(Rn).

This proves the decay property and the desired L2-bound.

Remark 5.3.6 (Brakke flows and spacetime Brakke flows). Let (V (t))t∈[0,1] be a Brakke flow (or
particularly a MCF), λ = (V (t))t∈[0,1] ⊗ dt is a spacetime Brakke flow where

µ(t) = ‖V (t)‖ and h(y, t, λ) = h(y, V (t)) ∀(y, t) ∈ spt ‖V (t)‖ × [0, 1].

5.3.2 Convergence of the approximate mean curvature flows, properties of the limit

We now study the convergence of (Vε(t))t∈[0,1] ⊗ dt and show the properties of the limit.

Theorem 5.3.7. (Convergence) Let ε ∈ (0, 1) and V0 ∈ Vd(Rn) of compact support and finite mass. Let
(Vε(t))t∈[0,1] be the approximate mean curvature flow starting from V0. We have:

1. There exists a sequence (εj)j −−−→
j→∞

0 such that

Vεj (t)⊗ dt −−−→
j→∞

λ = µ(t)⊗ ν(x,t) ⊗ dt, and ‖Vεj (t)‖ −−−→
j→∞

µ(t),

where µ(t) is a Radon measure on Rn and ν(x,t) a family of probability measures for (x, t) ∈ Rn ×
[0, 1].

2. δλ is bounded, (δλ)s = 0 and ‖h(·, ·, λ)‖L2(dλ) ≤ V0(Rn).
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3. If we assume that µ(t)⊗ ν(x,t) is rectifiable for a.e t ∈ [0, 1] then λ is a spacetime Brakke flow.

For simplicity, we split Theorem 5.3.7 into several propositions and prove each one separately.

Remark 5.3.8. The proof of Theorem 5.3.7 is crucially based on Propositions 5.4 and 5.5 in [36].
Note however that they are stated in [36] for codimension 1 varifolds, while we work with vari-
folds of arbitrary codimension in Rn. Actually, the proofs of Propositions 5.4 and 5.5 in [36] do not
require at all the varifolds to be 1-codimensional because they are based on results due to Brakke,
which are valid for general varifolds.

The next proposition combines the generalized estimates (in terms of codimension) of [36,
Proposition 5.4] and [36, Proposition 5.5].

Proposition 5.3.9. There exists some ε∗ = ε∗(n,M) > 0 (depending only on n and M ) such that for any
varifold W ∈ Vd(Rn) such that ‖W‖(Rn) ≤M ; if 0 < ε ≤ ε∗ and ε−

1
6 ≥ 2m, we have

• for any ψ ∈ Am∣∣∣∣δW (ψhε(·,W )) +

ˆ
Rn

ψ|Φε ∗ δW |2

Φε ∗ ‖W‖+ ε
dx

∣∣∣∣ ≤ ε 1
4

(
1 +

ˆ
Rn

ψ|Φε ∗ δW |2

Φε ∗ ‖W‖+ ε
dx

)
(5.118)

and ˆ
Rn
ψ|hε(·,W )|2 d‖W‖ ≤

ˆ
Rn

ψ|Φε ∗ δW |2

Φε ∗ ‖W‖+ ε
(1 + ε

1
4 ) dx+ ε

1
4 , (5.119)

• for any X ∈ Bm∣∣∣ˆ
Rn
hε ·X d‖W‖+ δW (X)

∣∣∣ ≤ ε 1
4 + ε

1
4

(ˆ
Rn

|Φε ∗ δW |2

Φε ∗ ‖W‖+ ε
dx

) 1
2

. (5.120)

Proposition 5.3.10 (Existence of a limit for the mass measure). Let V0 ∈ Vd(Rn) of bounded support,
for any ε ∈ (0, 1), let Vε(t) be the approximate mean curvature flow starting from V0.
There exists a sequence (εj)

∞
j=1 (not depending on t) converging to 0 as j → ∞, and a family of Radon

measures (µ(t))t∈[0,1] on Rn such that:

‖Vεj (t)‖
∗−−−⇀

j→∞
µ(t) (5.121)

for all t ∈ [0, 1].

Proof. Proposition 5.3.10 states that, up to an extraction independent of t, the mass measure ‖Vε(t)‖
converges as ε goes to 0 to a limit time-dependent measure µ(t). The proof is a direct adaptation
of the proof of [36, Proposition 6.4 (1)], which is itself based on the results of Section 5 in [36]
and two estimates [36, (6.3)], [36, (6.5)]. In short, the proof of [36] is based on the following
arguments: a limit measure µ(t) is defined for a countable, dense collection D of times using an
extraction argument, the extension of µ(t) to almost all times, more precisely the complement of
a countable set of times, follows from a continuity property of µ(t) on D, the convergence of the
subsequence ‖Vε(t)‖ to µ(t) for all these times t follows from an approximate continuity property
satisfied by ‖Vε(t)‖, and a last extraction is used to recover µ(t) for all t. The adaptation of the
proof to our framework uses the following arguments:

99



• V0 ∈ Vd(Rn) is not necessarily an open partition in our case, but the proof in [36] remains
valid in this case;

• the proof of [36] is based on the results of [36, Section 5] which are valid for varifolds of
any codimension (and not only for codimension 1 varifolds which are the subject of [36,
Proposition 6.4(1)]);

• the weight function Ω is identically equal to 1 in our case because we work with varifolds of
finite mass;

• estimate [36, Inequality (6.3)] is replaced by a decrease property of the mass (cf. Remark
5.2.7);

• estimate [36, Inequality (6.5)] is replaced by (5.96) (with test functions depending only on
the space variable).

Step 1: Let ε ∈ (0, 1), V ∈ Vd(Rn). We prove the following inequality

δ(V, ϕ)(hε(·, V )) ≤ 2ε
1
4 +

1

2

ˆ
Rn

|∇ϕ|2

ϕ
d‖V ‖,

for any ϕ ∈ Aj and 2j ≤ ε−
1
6 .

Indeed, let ϕ ∈ Aj with 2j ≤ ε−
1
6 and set for simplicity b :=

ˆ
Rn

ϕ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ ε
dx, we have

δ (V, ϕ) (hε(·, V )) = δV (ϕhε) +

ˆ
Rn
S⊥(∇ϕ) · hε(·, V ) dV (x, S)

≤ −b+ ε
1
4 b+ ε

1
4 +

1

2

ˆ
Rn
ϕ|hε(·, V )|2 d‖V ‖+

1

2

ˆ
Rn

|∇ϕ|2

ϕ
d‖V ‖ by (5.118)

≤ −b+ ε
1
4 b+ ε

1
4 +

1

2
b(1 + ε

1
4 ) +

1

2
ε

1
4 +

1

2

ˆ
Rn

|∇ϕ|2

ϕ
d‖V ‖ by (5.119)

≤ 1

2
(−1 + 3ε

1
4 )b+ 2ε

1
4 +

1

2

ˆ
Rn

|∇ϕ|2

ϕ
d‖V ‖

≤ 2ε
1
4 +

1

2

ˆ
Rn

|∇ϕ|2

ϕ
d‖V ‖.

Step 2: We define the limit measure µ(t) for a.e t ∈ [0, 1].
Let D ∩ [0, 1] be the set of dyadic numbers in [0, 1]. Let (εj)j∈N be a sequence converging to 0 such
that, ‖Vεj (t)‖ converges for any t ∈ D, denote the limit µ(t). The previous claim stems from the
Banach-Alaoglu theorem and the uniform boundedness of the mass (5.113).
Let Z := (ϕq)q∈N be a countable subset of C2

c (Rn,R+) which is dense in Cc(Rn,R+). Take ϕq ∈ Z
and assume without loss of generality ϕq < 1, then, for any i ∈ N large enough we have ϕq + i−1 ∈
Am for any m ≥ m0, m0 depends on i and ϕq. We apply (5.96) with ϕ(·, t) = ϕq, together with step
1 to obtain

‖Vεj (b)‖(ϕq + i−1)− ‖Vεj (a)‖(ϕq + i−1) ≤ (b− a)2ε
1
4
j +

1

2

ˆ b

a

ˆ
Rn

|∇(ϕq + i−1)|2

ϕq + i−1
d‖Vεj (t)‖dt,
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for any a, b ∈ [0, 1], a ≤ b and 2m0 ≤ ε
− 1

6
j . We obtain from [46, Lemma 3.1]

|∇(ϕq + i−1)|2

ϕq + i−1
≤ |∇ϕq|

2

ϕq
≤ 2‖∇2ϕq‖∞.

Therefore, for any a, b ∈ [0, 1], a ≤ b

‖Vεj (b)‖(ϕq + i−1)− ‖Vεj (a)‖(ϕq + i−1) ≤ (b− a)2ε
1
4
j + (b− a)‖∇2ϕq‖∞‖V0‖(Rn). (5.122)

We let j →∞, we deduce for a, b ∈ D, a ≤ b that

µ(b)(ϕq + i−1)− µ(a)(ϕq + i−1) ≤ (b− a)‖∇2ϕq‖∞‖V0‖(Rn).

We let i → ∞, using the uniform boundedness of the mass (5.113), we deduce for a, b ∈ D, a ≤ b
that

µ(b)(ϕq)− µ(a)(ϕq) ≤ (b− a)‖∇2ϕq‖∞‖V0‖(Rn).

The previous inequality tells us that the map gq : t 7→ µ(t)(ϕq) − t(b − a)‖∇2ϕq‖∞‖V0‖(Rn) is
nonincreasing for t ∈ D. Define

C := {t ∈ [0, 1], for some q ∈ N lim
s→t−

gq(s) > lim
s→t+

gq(s)}.

By the monotonicity property of gq, C is a countable set in [0, 1], and µ(t)(ϕq) may be defined
continuously on the complement of C uniquely from the values on D; then, one can define the
measure µ(t) for a.e t ∈ [0, 1] by density of Z in Cc(Rn,R+).
Step 3: We prove that for any t ∈ [0, 1] \ C

‖Vεj (t)‖
∗−⇀ µ(t).

Let t ∈ [0, 1] \ C and s ∈ D, t < s. From (5.122) we have

‖Vεj (s)‖(ϕq + i−1) ≤ ‖Vεj (t)‖(ϕq + i−1) +O(s− t).

We let j → so that

µ(s)(ϕq + i−1) ≤ lim inf
j
‖Vεj (t)‖(ϕq + i−1) +O(s− t).

Then we take the limit in i to obtain

µ(s)(ϕq) ≤ lim inf
j
‖Vεj (t)‖(ϕq) +O(s− t).

We now let s→ t− and use the continuity of gq at t so that

µ(t)(ϕq) ≤ lim inf
j
‖Vεj (t)‖(ϕq).

The same reasoning for s < t gives µ(t)(ϕq) ≥ lim supj ‖Vεj (t)‖(ϕq); hence

lim
j
‖Vεj (t)‖(ϕq) = µ(t)(ϕq), ∀ϕq ∈ Z and ∀t ∈ [0, 1] \ C;

we conclude the proof of step 3 by density of Z in Cc(Rn,R+).

The set C is countable, hence, by further extraction of the sequence (εj)j , we can define µ(t) on
[0, 1] entirely and ensure the convergence for all t ∈ [0, 1].
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Proposition 5.3.11 (The limit flow). Let V0 ∈ Vd(Rn) be of compact support. For any ε ∈ (0, 1),

• let Vε(t) be the approximate mean curvature flow starting from V0,

• set λε = Vε(t) ⊗ dt that is λε is the Radon measure on Rn × Gd,n × [0, 1] satisfying for all ϕ ∈
Cc(Rn ×Gd,n × [0, 1],R),

ˆ
ϕ dλε =

ˆ 1

0

(ˆ
(x,S)∈Rn×Gd,n

ϕ(x, S, t) dVε(t)

)
dt.

Then, there exists a sequence (εj)j for which

λεj
∗−−−⇀

j→∞
λ (5.123)

where λ is a Radon measure of the form

λ = µ(t)⊗ ν(x,t) ⊗ dt.

Here ‖Vεj (t)‖
∗−−−⇀

j→∞
µ(t), ∀t ∈ [0, 1] and (ν(x,t))(x,t) is a family of probability measures on Gd,n defined

for (x, t) ∈ Rn × [0, 1] (up to a set of (µ(t)⊗ dt)–zero measure).

Proof. We know by Proposition 5.3.10 that there exists a sequence (εj)j for which ‖Vεj (t)‖ con-
verges to a limit measure µ(t) for all t ∈ [0, 1]. Using for all j ∈ N,

λεj (R
n ×Gd,n × [0, 1]) =

ˆ 1

0
Vεj (t)(R

n ×Gd,n) dt ≤ ‖V0‖(Rn),

we can assert by Banach-Alaoglu’s compactness theorem that, up to a further extraction, λεj ⇀ λ,
where λ is a Radon measure on Rn ×Gd,n × [0, 1].
Denoting by Π the canonical projection (x, S, t) ∈ Rn ×Gd,n × [0, 1] 7→ (x, t) ∈ Rn × [0, 1] we now
show that Π#λ = µ(t)⊗ dt. Indeed, on the one hand, as a consequence of (5.123), we have

Π#λεj
∗−−−⇀

j→∞
Π#λ . (5.124)

On the other hand, by definition of push-forward measure, we have for ϕ ∈ Cc(Rn × [0, 1],R),

Π#λεj (ϕ) =

ˆ
Rn×Gd,n×[0,1]

ϕ ◦Π dλεj =

ˆ
(x,S,t)∈Rn×Gd,n×[0,1]

ϕ(Π(x, S, t)) dVεj (t) dt

=

ˆ 1

t=0

ˆ
x∈Rn

ϕ(x, t) d‖Vεj (t)‖ dt

−−−→
j→∞

ˆ 1

t=0

ˆ
x∈Rn

ϕ(x, t) dµ(t) dt. (5.125)

From (5.124) and (5.125) we obtain
Π#λ = µ(t)⊗ dt.

It follows by Young’s disintegration theorem [5, Theorem 2.28] that there exists a family of proba-
bility measures

(
ν(x,t)

)
(x,t)

on Gd,n, such that:

λ = µ(t)⊗ ν(x,t) ⊗ dt,

which completes the proof.
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Proposition 5.3.12. Let λ be the limit measure defined in Proposition 5.3.11. We have:

∀X ∈ C1
c(Rn × [0, 1],Rn), δ(Vεj (t)⊗ dt)(X) −−−→

j→∞
δλ(X) . (5.126)

Moreover, λ has bounded first variation (i.e. δλ is a Radon measure) and

δλ = h(·, t, λ)‖λ‖ = h(·, t, λ)µ(t)⊗dt and
ˆ 1

0

ˆ
Rn
|h(y, t, λ)|2dµ(t)dt ≤ ‖V0‖(Rn) <∞ , (5.127)

in particular (δλ)s = 0; for all bounded ψ ∈ C(Rn × [0, 1],R+), for all 0 ≤ t1 < t2 ≤ 1,

ˆ t2

t1

ˆ
Rn
ψ(y, t)|h(y, t, λ)|2 dµ(t) dt ≤ lim inf

j→∞

ˆ t2

t1

ˆ
Rn
ψ(y, t)

|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dy dt. (5.128)

Proof. Let us first check that (5.126) is a consequence of Vεj (t) ⊗ dt
∗−−−⇀

j→∞
λ. Indeed, let X ∈

C1
c(Rn × [0, 1],Rn), then g : (y, S, t) 7→ divS X(y) ∈ Cc(Rn ×Gd,n × [0, 1]) and thus

δ(Vεj (t)⊗ dt)(X) =

ˆ
g d(Vεj (t)⊗ dt) −−−→

j→∞

ˆ
g dλ = δλ(X) .

Let us now consider the sequences (µj)j∈N of Radon measures in Rn×[0, 1] and (fj)j∈N ∈ C∞(Rn×
[0, 1],Rn) defined as

µj = (Φεj ∗ ‖Vεj (t)‖+ εj)⊗ dt and fj(·, t) =
Φεj ∗ δVεj (t)

(Φεj ∗ ‖Vεj (t)‖+ εj)
for all j ∈ N.

Let ϕ ∈ Cc(Rn × [0, 1]). First note that by definition,

ˆ
Rn×[0,1]

ϕfjµj =

ˆ 1

0

ˆ
Rn
ϕ(y, t)Φεj ∗ δVεj (t) dy dt =⇒ fjµj = (Φεj ∗ δVεj (t))⊗ dt.

We obtain by standard arguments (bicontinuity of distributional bracket to be more specific) that
µj converge to µ(t) ⊗ dt as Radon measures and fjµj converges to δλ as distributions of order 1.
Indeed, as Φε is a mollifier, we recall that for all t ∈ [0, 1], ‖ϕ(·, t) ∗ Φεj − ϕ(·, t)‖C1 −−−→

j→∞
0 and

therefore, by dominated convergence and ‖Vεj‖(Rn) ≤ ‖V0‖(Rn),

ˆ 1

0

∣∣∣∣ˆ
Rn
ϕ
(
dΦεj ∗ ‖Vεj‖(t)− d‖Vεj‖(t)

)∣∣∣∣ dt ≤ ‖V0‖(Rn)

ˆ 1

0
‖ϕ(·, t) ∗ Φεj − ϕ(·, t)‖∞ dt −−−→

j→∞
0

so that recalling that ‖Vεj (t)‖ ⊗ dt converges to µ(t)⊗ dt = ‖λ‖,∣∣∣∣ˆ ϕ dµj −
ˆ
ϕ dµ(t) dt

∣∣∣∣ ≤ ˆ 1

0

∣∣∣∣ˆ
Rn
ϕ
(
dΦεj ∗ ‖Vεj‖(t)− d‖Vεj‖(t)

)∣∣∣∣ dt
+

∣∣∣∣ˆ ϕ
(
d‖Vεj‖(t) dt− dµ(t) dt

)∣∣∣∣+ εj

∣∣∣∣ˆ ϕ dy dt

∣∣∣∣ −−−→j→∞
0 .
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We hence checked that µj
∗−−−⇀

j→∞
µ(t) ⊗ dt. In a very similar way, we can check that for all X ∈

C1
c(Rn × [0, 1],Rn),

´
X · fj dµj −−−→

j→∞
δλ(X) since

∣∣Φεj ∗ δVεj (t)(X)− δVεj (t)(X)
∣∣ =

∣∣δVεj (t)(Φεj ∗X)− δVεj (t)(X)
∣∣ ≤ ‖Vεj (t)‖(Rn)‖Φεj ∗X −X‖C1

≤ ‖V0‖(Rn)‖Φεj ∗X −X‖C1 −−−→
j→∞

0

where we used Remark 5.2.7, recalling (5.126) we obtain the desired distributional convergence∣∣∣∣ˆ X · fj dµj − δλ(X)

∣∣∣∣ ≤ ˆ 1

0

∣∣Φεj ∗ δVεj (t)(X)− δVεj (t)(X)
∣∣ dt+

∣∣δ(Vεj (t)⊗ dt)(X)− δλ(X)
∣∣

−−−→
j→∞

0 .

Let ψ ∈ C(Rn × [0, 1],R+) be bounded and consider F : ((y, t), q) 7→ ψ(y, t)|q|2, then F is non-
negative continuous, and with respect to q, it is convex and has superlinear growth, hence satisfy-
ing the assumptions of [32] 4.1.2. We additionally have by Remark 5.2.7 that for all j,

ˆ
Rn×[0,1]

F ((y, t), fj(y, t)) dµj(y, t) =

ˆ
Rn×[0,1]

ψ(y, t)

∣∣Φεj ∗ δVεj (t)
∣∣2

(Φεj ∗ ‖Vεj (t)‖+ εj)
dy dt

≤ ‖ψ‖∞‖Vεj (0)‖(Rn) = ‖ψ‖∞‖V0‖(Rn) <∞

and we can apply [32] 4.4.2(i) and (ii) (see also 2.36 in [5]): there exists f ∈ L1(Rn× [0, 1],Rn, µ(t)⊗
dt) such that, up to extraction, the sequence of vector measures fjµj converge to f(µ(t)⊗ dt) and

ˆ 1

0

ˆ
Rn
ψ(y, t)|f(y, t)|2 dµ(t) dt =

ˆ
F ((y, t), f(y, t)) d(µ(t)⊗ dt)

≤ lim inf
j→∞

ˆ
F ((y, t), fj(y, t)) dµj(y, t)

≤ lim inf
j→∞

ˆ
Rn×[0,1]

ψ(y, t)

∣∣Φεj ∗ δVεj (t)
∣∣2

(Φεj ∗ ‖Vεj (t)‖+ εj)
dy dt ≤ ‖ψ‖∞‖V0‖(Rn) .

(5.129)

Thanks to the uniqueness of the distributional limit: f(µ(t) ⊗ dt) = δλ so that (δλ)s = 0 and
f = h(·, t, λ), and we obtain (5.127) plugging ψ = 1 in (5.129).
We are left with proving (5.128) for 0 ≤ t1 ≤ t2 ≤ 1, and we can take an affine cut–off approx-
imating 1[t1,t2] from below: for k large enough with respect to t2 − t1, let χk be a continuous
piecewise-affine function satisfying 1[t1+ 1

k
,t2− 1

k
] ≤ χk ≤ 1[t1,t2], then applying (5.129) to χkψ gives

ˆ 1

0

ˆ
Rn
χkψ|h|2 dµ(t) dt ≤ lim inf

j→∞

ˆ
Rn×[0,1]

χkψ

∣∣Φεj ∗ δVεj (t)
∣∣2

(Φεj ∗ ‖Vεj (t)‖+ εj)
dy dt

and we can take the limit k →∞ in the l.h.s. by dominated convergence while we use χk ≤ 1[t1,t2]

in the r.h.s. to conclude the proof of (5.128), and hence the current proof.
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Proposition 5.3.13 (Spacetime Brakke inequality for the limit flow.). Let λ be the limit measure defined
in Proposition 5.3.11, we write λ = µ(t) ⊗ ν(x,t) ⊗ dt and we assume that µ(t) ⊗ ν(·,t) is rectifiable a.e
t ∈ [0, 1], hence, ifMt denotes the support of µ(t) one has:

µ(t)⊗ ν(·,t) = µ(t)⊗ δT·Mt .

Then, for any ϕ ∈ C1
c(Rn × [0, 1],R+) and 0 ≤ t1 ≤ t2 ≤ 1,

µ(t2)(ϕ(·, t2))−µ(t1)(ϕ(·, t1)) ≤ −
ˆ t2

t1

ˆ
Rn
ϕ(y, t)|h(y, t, λ)|2 dµ(t)(y)dt

+

ˆ t2

t1

ˆ
Rn×Gd,n

TyM⊥t (∇ϕ(y, t)) · h(y, t, λ) dµ(y)dt+

ˆ t2

t1

ˆ
Rn
∂tϕ(·, t) dµ(t)dt.

Proof. Denote λεj = Vεj (t)⊗ dt and choose (as in Proposition 5.3.11) a sequence (εj)j satisfying:

lim
j→∞

λεj = λ = µ(t)⊗ ν(x,t) ⊗ dt and lim
j→∞

‖Vεj (t)‖ = µ(t).

Consider ϕ ∈ C1
c (Rn× [0, 1],R+) , t1, t2 such that 0 ≤ t1 ≤ t2 ≤ 1. The inequality we are seeking to

prove is linear in ϕ, without loss of generality we assume ϕ < 1, and for all sufficiently large i ∈ N
we define ϕi := ϕ+ i−1 < 1. We can plug ϕi in (5.96), also recalling (1.13), we obtain:

‖Vεj (t2)‖(ϕi(·, t2))− ‖Vεj (t1)‖(ϕi(·, t1))−
ˆ t2

t1

‖Vεj (t)‖(∂tϕi(·, t)) dt

=

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇xϕi) · hεj (·, Vεj (t)) dVεj (t) dt+

ˆ t2

t1

δ(Vεj (t))
[
ϕi(·, t)hε(·, Vε(t))

]
dt (5.130)

and the proof now consists in taking the limit, first in j and then in i.

Step 1: We take the limit in the l.h.s. of (5.130), that is, we prove

‖Vεj (t2)‖(ϕi(·, t2))− ‖Vεj (t1)‖(ϕi(·, t1))−
ˆ t2

t1

‖Vεj (t)‖(∂tϕi(·, t)) dt

−−−−→
i,j→∞

‖V (t2)‖(ϕ(·, t2))− ‖V (t1)‖(ϕ(·, t1))−
ˆ t2

t1

‖V (t)‖(∂tϕ(·, t)) dt. (5.131)

First note that ∂tϕi = ∂tϕ and recall that for all t ∈ [0, 1],

‖Vεj‖(t)
∗−−−⇀

j→∞
µ(t) =⇒

 ‖Vεj (t)‖(∂tϕi(·, t)) = ‖Vεj (t)‖(∂tϕ(·, t)) −−−→
j→∞

µ(t)(∂tϕ(·, t))

‖Vεj (t)‖(ϕ(·, t)) −−−→
j→∞

µ(t)(ϕ(·, t))

and since ‖Vεj (t)‖(∂tϕ(·, t)) ≤ ‖∂tϕ‖∞‖V0‖(Rn) by the decay of the mass (Remark 5.2.7), we infer
by dominated convergence that for any i,

ˆ t2

t1

‖Vεj (t)‖(∂tϕi(·, t)) dt −−−→
j→∞

ˆ t2

t1

‖V (t)‖(∂tϕ(·, t)) dt .
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Using again the decay of the mass and ϕi = ϕ+ i−1, we obtain∣∣‖Vεj (t)‖(ϕi(·, t))− µ(t)(ϕ(·, t))
∣∣ ≤ i−1‖V0‖(Rn) +

∣∣‖Vεj (t)‖(ϕ(·, t))− µ(t)(ϕ(·, t))
∣∣ −−−−→
i,j→∞

0

and with t = t1, t2 we can conclude the proof of (5.131) (Step 1). We now deal with the two terms
involving the mean curvature.

Step 2: We now prove that

lim sup
i→∞

lim sup
j→∞

ˆ t2

t1

δVεj (t)(ϕihεj (·, Vεj (t)))dt ≤ −
ˆ t2

t1

ˆ
Rn
ϕ(y, t)|h(y, t, λ)|2dµ(t)(y)dt. (5.132)

First, we note that ϕi = ϕ + i−1 and then, there exists mi,ϕ ∈ N (large enough, depending on i
and ϕ: e.g. mi,ϕ ≥ i‖∇xϕ‖∞) such that for all m ≥ mi,ϕ, ϕi ∈ Am. We apply (5.118) with ε = εj
and ψ = ϕi whence, for fixed ϕ and i, one has to take j large enough to ensure εj ≤ ε∗ and

ε
− 1

6
j ≥ 2mi,ϕ: this is the reason why we have to take limj→∞ before limi→∞ hereafter. Concerning

the varifold, we apply (5.118) with W = Vεj (t) (for t ∈ [0, 1]) and M = ‖V0‖(Rn) since we know
that ‖Vεj (t)‖(Rn) ≤ ‖V0‖(Rn) ≤M . We obtain, for all t ∈ [0, 1] and for all j large enough,∣∣∣∣∣δVεj (t) (ϕihεj (·, Vεj (t)))+

ˆ
Rn

ϕi|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx

∣∣∣∣∣ ≤ ε 1
4
j

(
1 +

ˆ
Rn

ϕi|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx

)

which we integrate between t1 and t2 so that using 0 ≤ ϕi ≤ 1 and Remark 5.2.7,

ˆ t2

t1

∣∣∣∣∣δVεj (t) (ϕihεj (·, Vεj (t)))+

ˆ
Rn

ϕi|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx

∣∣∣∣∣ dt
≤ ε

1
4
j

(
1 +

ˆ
Rn×[0,1]

ϕi|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx dt

)
≤ ε

1
4
j (1 + ‖V0‖(Rn)) −−−→

j→∞
0 .

We infer:

lim sup
j→∞

ˆ t2

t1

δVεj (t)(ϕihεj (·, Vεj (t)))dt = − lim inf
j→∞

ˆ t2

t1

ˆ
Rn

ϕi|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dxdt

≤ −
ˆ t2

t1

ˆ
Rn
ϕi|h(·, λ)|2dµ(t)dt by (5.128) in Proposition 5.3.12

and the proof of (5.132) (Step 2) follows from −ϕi ≤ −ϕ.
Step 3: As ∇xϕi = ∇xϕ, we are left with the proof of

lim sup
j→∞

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇yϕ) · hεj (y, Vεj (t)) dVεj (t) dt ≤
ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇yϕ) · h(y, t, λ) dλ .

(5.133)
We fix an arbitrary g ∈ C2

c (Rn × [0, 1],Rn), there exists mg ∈ N such that g(·, t)) ∈ Bm ∀m ≥ mg

and ∀t ∈ [0, 1], this is due to the compactness of [0, 1]. We apply (5.120) with ε = εj and X = g and

we take j large enough to ensure that εj ≤ ε∗ and ε
1
6
j ≥ 2mg. Concerning the varifold, we apply
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(5.120) with W = Vεj (t) (for t ∈ [0, 1]) and M = ‖V0‖(Rn) since we know that ‖Vεj (t)‖(Rn) ≤
‖V0‖(Rn) ≤M by Remark 5.2.7. We obtain, for j large enough

∣∣∣∣ˆ
Rn
hεj (·, Vεj (t)) · g(·, t) d‖Vεj (t)‖+ δVεj (t)(g(·, t))

∣∣∣∣ ≤ ε 1
4
j + ε

1
4
j

(ˆ
Rn

|Φε ∗ δVεj (t)|2

Φε ∗ ‖Vεj (t)‖+ ε
dx

) 1
2

which we integrate between t1 and t2 so that

ˆ t2

t1

∣∣∣∣ˆ
Rn
hεj (·, Vεj (t)) · g(·, t) d‖Vεj (t)‖+ δVεj (t)(g(·, t))

∣∣∣∣ dt
≤
ˆ t2

t1

ε
1
4
j dt+ ε

1
4
j

ˆ t2

t1

(ˆ
Rn

|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx

) 1
2

dt

≤ε
1
4
j + ε

1
4
j

(ˆ 1

0

ˆ
Rn

|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dx dt

) 1
2

≤ε
1
4
j

(
1 + ‖V0‖(Rn)

1
2

)
−−−→
j→∞

0 , (5.134)

where we used Jensen inequality and Remark 5.2.7.

We now observe that the map g : (y, t) 7→ (TyMt)
⊥(∇ϕ) is µ(t) ⊗ dt–measurable and belongs to

L2(µ(t) ⊗ dt) (µ(t) is finite and ϕ ∈ C1
c , hence g is bounded by ‖∇ϕ‖), we can assert that, for any

η ∈ (0, 1), there exists a map gη ∈ C2
c(Rn × [t1, t2],Rn) such that:

ˆ t2

t1

ˆ
Rn

∣∣(TyMt)
⊥(∇ϕ(y))− gη(y, t)

∣∣2dµ(t)(y)dt < η2. (5.135)

Now we compute

ˆ t2

t1

ˆ
Rn×Gd,n

S⊥(∇ϕ) · hεj (·, Vεj (t)) dλεj =

ˆ t2

t1

ˆ
Rn×Gd,n

(
S⊥(∇ϕ)− gη

)
· hεj (·, Vεj (t)) dλεj

+

(ˆ t2

t1

ˆ
Rn
gη · hεj (·, Vεj (t)) d‖Vεj (t)‖dt+

ˆ t2

t1

δVεj (t)(gη) dt

)
−
ˆ t2

t1

δVεj (t)(gη) dt+ δλ(gη)

+

ˆ t2

t1

ˆ
Rn
h(·, ·, λ) ·

(
gη − (TyMt)

⊥(∇ϕ)
)
dµ(t)dt

+

ˆ t2

t1

ˆ
Rn

(TyMt)
⊥(∇ϕ(y, t)) · h(y, t, λ) dµ(t)dt.

(5.136)
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By the varifold convergence, (5.135) and (5.119) we have

lim
j

ˆ t2

t1

ˆ
Rn×Gd,n

(
S⊥(∇ϕ)− gη

)
· hεj (·, Vεj (t)) dλεj

≤

(ˆ t2

t1

ˆ
Rn×Gd,n

|S⊥(∇ϕ)− gη|2 dλ

) 1
2 (

lim
j

ˆ t2

t1

ˆ
Rn
|hεj (·, Vεj (t))|2 d‖Vεj (t)‖

) 1
2

=

(ˆ t2

t1

ˆ
Rn
|(TyMt)

⊥(∇ϕ)− gη|2 dµ(t)dt

) 1
2

(
lim
j

ˆ 1

0

ˆ
Rn

|Φεj ∗ δVεj (t)|2

Φεj ∗ ‖Vεj (t)‖+ εj
dxdt

) 1
2

≤ η (‖V0‖(Rn))
1
2 −−−→
η→0

0.

(5.137)

By (5.134) we have:

lim
j

(ˆ t2

t1

ˆ
Rn
gη · hεj (·, Vεj (t)) d‖Vεj‖(t) +

ˆ t2

t1

δVεj (t)(gη) dt

)
= 0. (5.138)

By the varifold convergence we have:

lim
j
|
ˆ t2

t1

δVεj (t)(gη) dt− δλ(gη)| = 0, (5.139)

and finally, the Cauchy-Schwarz inequality and (5.135) imply

ˆ t2

t1

ˆ
Rn
h(·, ·, λ) ·

(
gη − (TyMt)

⊥(∇ϕ)
)
dµ(t)dt

≤
(ˆ t2

t1

ˆ
Rn
|h(·, ·, λ)|2 dµ(t)dt

) 1
2
(ˆ t2

t1

ˆ
Rn
|gη − (TyMt)

⊥(∇ϕ)|2 dµ(t)dt

) 1
2

≤ (‖V0‖(Rn))
1
2 η −−−→

η→0
0.

(5.140)

From (5.136)-(5.140) we deduce (5.133) (Step 3), this concludes the proof of Proposition 5.3.13.

Remark 5.3.14. From the proof, we notice that it only suffices to assume that ν·,t is a Dirac’s mea-
sure, as we do not use the fact that T·µ(t) is the tangent space nor the properties of µ(t) as a
rectifiable measure.

Remark 5.3.15 (Non uniqueness of the limit spacetime Brakke flows). We recall that the limit
measure λ in Theorem 5.3.7 depends on the choice of the subsequence (εj)j∈N, hence is not unique
(in general). This, somehow, is related to the non-uniqueness of Brakke flows, as Brakke flows
themselves are spacetime Brakke flows when tensored with the measure "dt".

5.4 Consistency of approximate mean curvature flows

The following is a consistency result on the approximate MCFs.
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Proposition 5.4.1. Let V0, (Wk)k∈N ∈ Vd(Rn) of compact supports with ‖Wk‖(Rn) ≤M , and (εk)k∈N ∈
(0, 1) such that

Wk
∗−−−⇀

k→∞
V0 and εk −−−→

k→∞
0.

Define for every k ∈ N,

• (Vεk(t))t∈[0,1]: the approximate MCF starting from V0.

• ((Wk)εk(t))t∈[0,1]: the approximate MCF starting from Wk.

If we assume that Vεk(t) converges weakly-* for a.e t ∈ [0, 1] to a certain limit V (t) of bounded support for
a.e t ∈ [0, 1], and that

∆(Wk, V0) exp
(
c7ε
−n−7
k

)
→ 0 as k →∞. (5.141)

Then, (Wk)εk(t)
∗−−−⇀

k→∞
V (t) for a.e t ∈ [0, 1]. In particular, if V (t) is a Brakke flow, (Wk)εk(t) converges

weakly-* to a Brakke flow starting from V0 (which in this case is V (t)).

Proof. By the weak-*convergence and the fact that sptV0 is compact we can infer that ‖V0‖(Rn) ≤
M . By Proposition 5.2.3 we have:

∆(Vεk(t), (Wk)εk(t)) ≤ ∆(V0,Wk) exp
(
tc7,Mε

−n−7
k

)
,

for all t ∈ [0, 1]. We deduce that

∆(V (t), (Wk)εk(t)) ≤ ∆(V (t), Vεk(t)) + ∆(Vεk(t), (Wk)εk(t))

≤ ∆(V (t), Vεk(t)) + ∆(V0,Wk) exp
(
tc7,Mε

−n−7
k

)
.

We can prove by Proposition 1.2.3, coupled with a truncation argument as sptV (t) is bounded,
that

∆(V (t), Vεk(t))→ 0,

for a.e t ∈ [0, 1]. Thus, (Wk)εk(t) ⇀ V (t) for a.e t ∈ [0, 1].

Remark 5.4.2. In fact, we can prove that for any fixed t, under the same notations and hypothesis
of Proposition 5.4.1

if Vεk(t)
∗−−−⇀

k→∞
V (t) then (Wk)εk(t)

∗−−−⇀
k→∞

V (t).

In the proposition we require a.e (with respect to time) convergence to stay consistent with general
convergence results.

5.5 Appendix

The following lemma is used to prove Lemma 5.2.4.

Lemma 5.5.1. Let S ∈ Gd,n, A ∈Mn, one has

| tr(S ◦A)| ≤ n‖A‖.
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Proof. Indeed, it is clear that for any matrix B ∈Mn that | tr(B)| ≤ n|B|∞ ≤ n‖B‖. Therefore,

| tr(S ◦A)| ≤ n‖S ◦A‖ ≤ n‖S‖‖A‖ ≤ n‖A‖,

where we used ‖S‖ = 1, this finishes the proof.

The following lemma stems directly from the triangle inequality, it helps simplifying the proofs
of Proposition 5.1.8.

Lemma 5.5.2. Let A,B ∈Mn and S, T ∈Md,n be such that ‖S‖ = ‖T‖ = 1, one has

‖SASt − TBT t‖ ≤ (‖A‖+ ‖B‖) ‖S − T‖+ ‖A−B‖. (5.142)

Proof. Using the triangle inequality, and the fact that ‖M t‖ = ‖M‖ for any matrix M we infer that

‖SASt − TBT t‖ ≤ ‖SASt − SAT t‖+ ‖SAT t − SBT t‖+ ‖SBT t − TBT t‖
≤ ‖S‖‖A‖‖St − T t‖+ ‖S‖‖A−B‖‖T t‖+ ‖S − T‖‖B‖‖T t‖
≤ (‖A‖+ ‖B‖) ‖S − T‖+ ‖A−B‖.

This concludes the proof of (5.142).

The following lemma contains several properties on determinant’s expansions, used mainly to
prove Propositions 5.1.3 and 5.1.8.

Lemma 5.5.3. Let 1 ≤ k ≤ n and Q ∈ Mk be such that |Q|∞ ≤ 1. There exists c2 ≥ 1 only depending
on n such that,

|det(Ik +Q)− det(Ik)| ≤ c2|Q|∞ and |det(Ik +Q)− det(Ik)− tr(Q)| ≤ c2(|Q|∞)2 . (5.143)

Let 1 ≤ d ≤ n, L ∈Md,n , R ∈Mn be such that L ◦ Lt = Id and |R|∞ ≤ 1. Then

((In +R) ◦ Lt)t ◦ ((In +R) ◦ Lt) = Id +Q with Q = L ◦
(
Rt +R

)
◦ Lt + L ◦Rt ◦R ◦ Lt .

and there exists c3 ≥ c2 only depending on n such that

|Q|∞ ≤ c3|R|∞ . (5.144)

Moreover, if we assume that c3|R|∞ ≤ 1 then there exists c4 ≥ 4nc3 only depending on n such that∣∣∣det
(
((In +R) ◦ Lt)t ◦ ((In +R) ◦ Lt)

) 1
2 − 1

∣∣∣ ≤ c4|R|∞, (5.145)

and ∣∣∣ det
(
((In +R) ◦ Lt)t ◦ ((In +R) ◦ Lt))

) 1
2 − 1− tr

(
R ◦ Lt ◦ L

)∣∣∣ ≤ c4|R|2∞. (5.146)

Proof. We consider the normed space (Mp,q, | · |∞) and we recall that for M ∈Mp,q and N ∈Mq,r,

|MN |∞ ≤ q |M |∞|N |∞ . (5.147)

Let Q ∈ Mk be such that |Q|∞ ≤ 1 and let B = {M ∈ Mk : |Ik −M |∞ ≤ 1} be the closed unit
ball centered at Ik. By compactness of B, we can introduce

c2,k = max

{
1,max
M∈B

‖D det(M)‖, 1

2
max
M∈B

‖D2 det(M)‖
}
,
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where ‖ · ‖ are the linear and bilinear operator norms associated with (Mp,q, | · |∞). Note that c2,k

depends on k (since B depends on k) though this can be avoided by defining c2 = max1≤k≤n c2,k.
We recall that the differential of the determinant map det at Ik is the trace map: D det(Ik) = tr
and therefore, applying Taylor-Lagrange inequality to det on the line segment [Ik, Ik + Q] ⊂ B
yields (5.143). Let L ∈ Md,n , R ∈ Mn be such that L ◦ Lt = Id and |R|∞ ≤ 1 and let us use the
notation Q = L ◦

(
Rt +R

)
◦ Lt + L ◦Rt ◦R ◦ Lt ∈Md hereafter. First note that |L|∞ ≤ 1, indeed,

the assumption L ◦ Lt = Id can be reformulated as follows: the columns of Lt (i.e. the rows of L)
constitute an orthonormal family (v1, . . . , vd) of Rn so that |L|∞ = maxij |Lij | = maxij |vi · ej | ≤ 1.
Let c3 = (2n2 + n3)(1 + c2), using (5.147) and |M t|∞ = |M |∞, we have

|Q|∞ =
∣∣L ◦ (Rt +R

)
◦ Lt + L ◦Rt ◦R ◦ Lt

∣∣
∞ ≤ n

2|R+Rt|∞|L|2∞ + n3|L|2∞|R|2∞
≤ (2n2 + n3|R|∞)|R|∞ ≤ (2n2 + n3)|R|∞ ≤ c3|R|∞ ,

that is (5.144). We now set c4 = (1 + c2)c2
3 + n4 ≥ (1 + c2)2(2n + n3)c3 ≥ 4nc3, and we moreover

assume c3|R|∞ ≤ 1, therefore

((In +R) ◦ Lt)t ◦ ((In +R) ◦ Lt) = Id +Q with |Q|∞ ≤ 1

so that the first part of (5.143) gives

|det (Id +Q)− 1| ≤ c2|Q|∞ ≤ c2(2n2 + n3)|R|∞ ≤ c3|R|∞ ≤ 1

and in particular det (Id +Q) ≥ 0 . (5.148)

We infer (5.145) applying |a − 1| ≤ |a2 − 1| (note that a = det (Id +Q) ≥ 0). We are left with the
proof of (5.146). We now apply the second inequality in (5.143) to obtain

|det (Id +Q)− 1− trQ| ≤ c2|Q|2∞ ≤ c2c
2
3|R|2∞ . (5.149)

Furthermore, using tr(A) = tr
(
At
)

and tr(AB) = tr(BA) when both products make sense, we
have

tr
(
L ◦Rt ◦ Lt

)
= tr

(
L ◦R ◦ Lt

)
= tr

(
R ◦ Lt ◦ L

)
and thus, by definition of Q and (5.147),∣∣trQ− 2 tr

(
R ◦ Lt ◦ L

)∣∣ =
∣∣tr(L ◦Rt ◦R ◦ Lt)∣∣ ≤ d|L ◦Rt ◦R ◦ Lt|∞ ≤ dn3|L|2∞|R|2∞

≤ n4|R|2∞ . (5.150)

From (5.149) and (5.150) we obtain∣∣det (Id +Q)− 1− 2 tr
(
R ◦ Lt ◦ L

)∣∣ ≤ (c2c
2
3 + n4)|R|2∞ (5.151)

We now apply the following inequality, valid for any z ≥ −1,∣∣∣∣√1 + z − 1− 1

2
z

∣∣∣∣ ≤ 1

2
z2

with z = det (Id +Q)− 1, from (5.148) we know that −1 ≤ z ≤ c3|R|∞, we hence obtain∣∣∣√det(Id +Q)− 1− tr
(
R ◦ Lt ◦ L

)∣∣∣ ≤ ∣∣∣∣√1 + z − 1− 1

2
z

∣∣∣∣+

∣∣∣∣12z − tr
(
R ◦ Lt ◦ L

)∣∣∣∣
≤ 1

2
z2 +

1

2
(c2c

2
3 + n4)|R|2∞ thanks to (5.151),

≤ 1

2
(c2

3 + c2c
2
3 + n4)|R|2∞ ≤ c4|R|2∞ ,

which concludes the proof of (5.146).
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The following lemma stems directly from Lemma 5.5.3.

Lemma 5.5.4. Let P,N ∈Md and assume that P is invertible, then

‖P−1‖ ‖P −N‖ ≤ 1 ⇒ |det(P )− det(N)| ≤ c2|det(P )|‖P−1‖ ‖P −N‖ . (5.152)

Proof. Indeed, first note that

|det(P )− det(N)| = |det(P )|
∣∣1− det

(
P−1N

)∣∣ and P−1N = Id + P−1(N − P ) .

Furthermore
∣∣P−1(N − P )

∣∣
∞ ≤ ‖P

−1(N − P )‖ ≤ ‖P−1‖ ‖P − N‖ ≤ 1 so that applying (5.143)
with k = d and Q = P−1(N − P ) we can assert that∣∣1− det

(
P−1N

)∣∣ ≤ c2

∣∣P−1(N − P )
∣∣
∞ ≤ c2 ‖P−1‖ ‖N − P‖

which concludes the proof of (5.152).

The following is a crucial step to prove Proposition 5.1.8.

Lemma 5.5.5. Let S, T ∈ Gd,n, there exist S̃ = (s1| . . . |sd)t , T̃ = (t1| . . . |td)t ∈ Md,n where {si}di=1

and {ti}di=1 are two orthonormal basis of S and T such that

‖S̃ − T̃‖ ≤ 2‖S − T‖.

Proof. Let θ be the largest principal angle between the subspaces S and T , which can be character-
ized by:

sin(θ) = max
s

min
t

√
1− 〈s, t〉2, s ∈ S, t ∈ T and |s| = |t| = 1.

We infer from [1, Proposition III.29] that ‖S − T‖ = sin(θ), furthermore, there exists a rotation r of
Rn such that r(S) = T , with

‖r − In‖ ≤ 2 sin(θ/2).

Let S̃ = (s1| . . . |sd)t ∈ Md,n, with {si}di=1 being an orthonormal basis of S, the matrix T̃ = r ◦ S̃ ∈
Md,n can be written as (t1| . . . |td)t where {ti}di=1 is an orthonormal basis of and T . We have then,
using that ‖S̃‖ = 1

‖S̃ − T̃‖ = ‖S̃ − r ◦ S̃‖ ≤ ‖In − r‖‖S̃‖ ≤ 2 sin(θ/2);

the result follows from noting that 2 sin(θ/2) ≤ 2 sin(θ) as θ ∈ [0, π/2].

The following is a key lemma to prove the diffeomorphic character of the pushforward maps
involved in the construction of the approximate MCF (Proposition 5.1.3). We prove that the map
id + ∆th, h ∈ C1(Rn,Rn) is a diffeomorphism under a condition on ∆t and h. We use this lemma
to obtain a sufficient condition on ∆t to have that the map id + ∆thε is a diffeomorphism, where
hε is the approximate mean curvature.

Lemma 5.5.6. Let f ∈ C(Rn,Rn) such that f := id + ∆th, ∆t > 0, h ∈ C1(Rn,Rn), assume that

max{∆t‖h‖∞,∆t‖Dh‖∞, ‖Jf − 1‖∞} < 1.

Then, f is a diffeomorphism of Rn.
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Proof. For any x ∈ Rn, we have Jf(x) 6= 0, therefore f is a local diffeomorphism by the inverse
mapping theorem. We now prove that f is injective, indeed, for any x, y ∈ R one has

|f(x)− f(y)| = |x− y −∆t (h(x)− h(y)) | ≥
∣∣|x− y| −∆t|h(x)− h(y)|

∣∣ ≥ |x− y|∣∣1− Lip(h)
∣∣ > 0,

this proves the injectivity of f .
Up to now, we have checked that f is injective and a local diffeomorphism at every point therefore
f is a global diffeomorphism from Rn onto f(Rn); as f(Rn) is open, it remains to show that f(Rn)
is closed. We have by assumption that ‖f − id‖∞ = ∆t‖h‖∞ < 1, this implies that f is proper, by
[41] it is closed, therefore f(Rn) is closed in Rn, recalling that it was open we have f(Rn) = Rn
and f is a diffeomorphism of Rn.

5.6 List of constants used in the chapter and their properties

• ∀ε ∈ (0, 1), c(ε) =
1´

Rn ψ(x)Φ̂ε(x)dx
(5.2), c(ε) ≥ 1 .

• c =

(ˆ
B(0, 1

2
)
Φ̂1(y)dy

)−1

(5.4), ∀ε ∈ (0, 1) 1 ≤ c(ε) ≤ c .

• c0 := sup
ε∈(0,1)

c(ε)9ε−2−n

(2π)n/2
exp

(
− 1

8ε2

)
<∞ (5.10).

• c1 = 2(1 + ωnc0)(1 + c0) ≥ 2, Proposition 5.1.2.

• c2 = max
1≤k≤d

{
1, max
M∈B1(Mk)

‖D det(M)‖, 1
2 max
M∈B1(Mk)

‖D2 det(M)‖
}
≥ 1 Proposition 5.1.3.

• c3 = (2n2 + n3)(1 + c2) Lemma 5.5.3.

• c4 = (1 + c2)c2
3 + n4 Proposition 5.1.3 c4 ≥ 4nc3 , c4 ≥ c2, c4 ≥ 2 .

• c5 = 4c2
1c4 (5.33).

• c6 = max{4c1, (1 + c0ωn)(c(2π)−n/2 + c0)(2 + c1)} ≥ 4c1 (5.36).

• c7 = 6(128nc2c3c6 + c1c4) Proposition 5.1.8, c7 ≥ 56c6 c7,M = c7(M + 1)2.

• c8 = 112c2
1 + 3c2

1c7 Lemma 5.1.12.

• c9 = 2c7(57c1c4 + c8) Lemma 5.1.13 c9 ≥ c8. c9,M = c9(M + 1)5, c9,M ≥ c8M
3.

• c10 = 4c9, c10,M = c10(M + 1)5 Proposition 5.1.11.

• c11 = (56c1 + c1c4)(M + 1)2 Proposition 5.2.2.

• c12 = (c6 + 3nc1 + 4)(M + 1)3 Corollary 5.2.6.
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Chapter 6

Avoidance principle for approximate
MCFs and spacetime Brakke flows

The classical avoidance principle for the mean curvature flow says that ifM and N are two dis-
joint smooth compact hypersurfaces, then their respective mean curvature flows are disjoint (see
Theorem 2.1.4). This avoidance property is a consequence of the maximum principle. This prin-
ciple fails in higher codimensions, take for instance the MCF of two enlaced disjoint circles in R3

(see Figure 6.1). Ilmanen ([34, Lemma 4E]) generalized the avoidance principle to arbitrary "set-
theoretic subsolutions of mean curvature flow". He showed in [35, Theorem 10.5] that the support
of a codimension 1 integral Brakke flow is a set-theoretic subsolution of mean curvature flow, so
the avoidance principle also applies to such a Brakke flow.

In this chapter, inspired by the works of Ilmanen and Brakke, we prove certain avoidance and
approximate avoidance principles for spacetime Brakke flows and their approximations defined
in chapter 5.
We start by proving the nontriviality of the limit of the spacetime approximate MCF (Definition
6.2.1, Theorem 6.2.9) when starting from the boundary of an open partition of Rn (Definition 2.2.3).
The proof is based on a ε- approximate comparison principle with respect to spheres evolving
by the MCF satisfied by the piecewise discrete approximate MCF. This solves the triviality issue
(discussed in section 2.2.6) that might occur in the Brakke construction.
We show in Proposition 6.3.1 different avoidance principles for the mass measure of d-spacetime
Brakke flows with respect to spheres evolving by the lawR(t)2 = R(0)2−2dt. Theorem 6.4.3 states
a general avoidance principle satisfied by spacetime Brakke flows of codimension 1 with respect to
smooth mean curvature flows of codimension 1. The theorem has several consequences, notably,
the inclusion of the mass measure of a spacetime Brakke flow in the level set flow of the starting
varifold ([22]).

Figure 6.1: The MCFs of two enlaced disjoint circles in R3 collide.
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6.1 Preliminaries

We state the following technical lemmas that will help later in proving different results of the
chapter.

Lemma 6.1.1. Let h ∈ C(Rn,Rn), ϕ ∈ C1(Rn, (0,∞)) and S ∈ Gd,n. We have:

−|h|2ϕ+ S⊥∇ϕ · h ≤ 1

4

|S∇ϕ|2

ϕ
+∇ϕ · h.

Proof. We can simply write, as ϕ does not vanish,

−|h|2ϕ+ S⊥∇ϕ · h = −|h|2ϕ− S∇ϕ · h+∇ϕ · h = −
∣∣∣ϕ 1

2h+
1

2

S∇ϕ
ϕ

1
2

∣∣∣2 +
1

4

|S∇ϕ|2

ϕ
+∇ϕ · h

≤ 1

4

|S∇ϕ|2

ϕ
+∇ϕ · h,

this completes the proof.

We introduce the notion of barrier functions and we highlight one of their main properties. For
convenience reasons, we use the definition of Brakke ([12, Section 3.6]) for barrier functions even
though it might refer to a more general class of functions (see [9]).

Definition 6.1.2. A function ψ ∈ C2(Rn×R+,R+) is called a barrier function if there exists a ∈ Rn and
γ ∈ C2(R,R+) such that

ψ(t, x) = γ(|x− a|2 + 2dt) for all (x, t) ∈ Rn × R+

and (
d

dr
γ(r)

)2

≤ 4γ(r)
d2

dr2
γ(r) for all r ∈ R.

Lemma 6.1.3. (Sphere barriers) Let ψ be a barrier function, for every S ∈ Gd,n. We have

1

4

|S∇ψ|2

ψ
− S : ∇2ψ + ∂tψ ≤ 0

on {(x, t) ∈ Rn × R, ψ(x, t) 6= 0}.

Proof. We set a = 0 for simplicity. Let γ ∈ C2(R,R+) be such that

ψ(t, x) = γ(|x|2 + 2dt) for all (x, t) ∈ Rn × R+.

We compute the derivatives of ψ:

ψ(x, t) = γ(|x|2 + 2dt),

∂tψ(x, t) = 2dγ′(|x|2 + 2dt),

∇ψ(x, t) = 2γ′(|x|2 + 2dt)x, and

∇2ψ(x, t) = 4γ′′(|x|2 + 2dt)x⊗ x+ 2γ′(|x|2 + 2dt)In.
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We have then, on {(x, t) ∈ Rn × R, ψ(x, t) 6= 0}, using S : In = tr(S) = d and γ′(r)2 ≤ 4γ(r)γ′′(r)
for all r ∈ R,

1

4

|S∇ψ(x, t)|2

ψ(x, t)
− S : ∇2ψ(x, t) + ∂tψ(x, t)

=
|S(x)|2γ′(|x|2 + 2dt)2

γ(|x|2 + 2dt)
− 4|S(x)|2γ′′(|x|2 + 2dt)− 2dγ′(|x|2 + 2dt) + 2dγ′(|x|2 + 2dt)

= |S(x)|2
(
γ′(|x|2 + 2dt)2

γ(|x|2 + 2dt)
− 4γ′′(|x|2 + 2dt)

)
≤ 0,

and this completes the proof.

6.2 Nontriviality of the limit spacetime approximate MCF of open par-
titions

We start by defining the notion of a limit of the spacetime approximate MCF.

Definition 6.2.1. (Limit of the spacetime approximate MCF) Let V0 ∈ Vd(Rn) of compact support, let
(Vε(t))t∈[0,1] be the approximate MCF starting from V0. We say that a Radon measure λ in Rn×Gd,n×[0, 1]
is a limit of the spacetime approximate MCF if there exists a sequence (εj)j → 0, a family of Radon measures
(µ(t))t∈[0,1] on Rn and a family of probability measures (ν(x,t))(x,t) on Gd,n such that

• ‖Vεj (t)‖
∗−−−−⇀

j→+∞
µ(t), for every t ∈ [0, 1] and

• Vεj (t)⊗ dt
∗−−−−⇀

j→+∞
λ = µ(t)⊗ ν(x,t) ⊗ dt.

We recall that we have shown the existence of such sequence and limits in Proposition 5.3.10. In analogy to
Definition 5.3.4, the family (µ(t))t∈[0,1] is called the mass measure of λ.

We aim to prove that limits of the spacetime approximate MCF are nontrivial when the starting
varifold is the boundary of an open partition (Definition 2.2.3). The sense we give to the nontrivi-
ality is that µ(t)(Rn) > 0 for a certain time interval [0, t0], t0 > 0.

The following lemma is the key to prove the nontriviality property. We prove a ε-avoidance
principle for a limit of the spacetime approximate MCF with respect to spheres evolving by the
law

R(t)2 = R(0)2 − 2dt, t ∈ [0, R(0)2/2d]; (6.1)

whereR(t) denotes the radius of the sphere at time t. This is an adaptation of Brakke’s sphere bar-
rier to external varifolds principle [12, Theorem 3.7]. The proof consists of injecting a suitable test
function encoding the evolution of the spheres in the ε-Brakke inequality satisfied by approximate
MCFs (Corollary 5.2.6).

Lemma 6.2.2. Let M ≥ 1, ε ∈ (0, 1) and V0 ∈ Vd(Rn) with ‖V0‖(Rn) ≤ M . Let T = {ti}mi=1 be a
subdivision of [0, 1] satisfying (5.34) and (V pc

ε,T (t))t∈[0,1] be the piecewise constant approximate MCF with
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respect to T starting from V0.
Define ψ(x, t) = γ(|x− a|2 + 2dt) with

γ(r) =

{
(R2 − r)4 for r ≤ R2,
0 for r > R2.

Assume that c12δ(T )ε−8 ≤ ε. Then, there exists ε0 ∈ (0, 1) depending only on n and M such that, for any
ε ∈ (0, ε0), we have:

‖V pc
ε,T (b)‖(ψ(·, b))− ‖V pc

ε,T (a)‖(ψ(·, a)) ≤ c13ε
1
6 for any a, b ∈ [0, 1], a ≤ b;

where c13 depends only on n, M and R.

Proof. We assume that T satisfies (5.34) to give sense to the approximate MCF. We note that the
choice of the power in the definition of γ is not relevant, as long as it is strictly larger than 3 (so
that ψ is C3). In the proof, we denote for simplicity V (t) = V pc

ε,T (t).
Step 1: We first prove that

ˆ 1

0

ˆ
Rn

|(δV (t) ∗ Φε)(y)|2

(‖V (t)‖ ∗ Φε)(y) + ε
dydt ≤M + 1. (6.2)

From Remark 5.1.5, one can state that ∀i ∈ {0, . . . ,m}

‖V (ti)‖(Rn) ≤M + 1.

From (5.24) with ϕ ≡ 1, V = V (ti) and ∆t = ti+1 − ti, we have ∀i ∈ {0, . . . ,m− 1}

‖V (ti+1)‖(Rn)− ‖V (ti)‖(Rn)−∆tδV (ti) (hε(·, V (ti))) ≤ c5(M + 1)3 (ti+1 − ti)2 ε−8.

Then, by (5.34) and (5.25), and the fact that V (t) is constant on [ti, ti+1), we infer that ∀i ∈
{0, . . . ,m− 1}

‖V (ti+1)‖(Rn)− ‖V (ti)‖(Rn) +

ˆ ti+1

ti

ˆ
Rn

|(δV (t) ∗ Φε)(y)|2

(‖V (t)‖ ∗ Φε)(y) + ε
dydt ≤ ti+1 − ti.

Summing up the inequalities for i ∈ {0, . . . ,m− 1}we obtain

‖V (1)‖(Rn)− ‖V (0)‖(Rn) +

ˆ 1

0

ˆ
Rn

|(δV (t) ∗ Φε)(y)|2

(‖V (t)‖ ∗ Φε)(y) + ε
dydt ≤ 1.

Then, step 1 follows from ‖V (0)‖(Rn) = ‖V0‖(Rn) ≤M .
Step 2: Let ψε = c−1

(
ψ + 4ε

1
6 ‖ψ‖C3

)
with c = c(n,R) = 2 max{‖ψ‖C3 , ‖∇ψ‖L2 , 1} < ∞. We

prove that ψε ∈ Aj and∇ψε ∈ Bj (Definition 2.2.5) with j = b1
2ε
− 1

6 c and ε ∈ (0, 4−6).
We know that ψ ≥ 0, and 4ε

1
6 j ≥ 1, this implies:

ψ(·, t) ∈ C3(Rn,R+) ∀t ∈ [0, 1];
‖ψε(·, t)‖∞ ≤ 1 ∀t ∈ [0, 1];
‖∇mψε(·, t)‖∞ = c−1‖∇mψ(·, t)‖∞ ≤ jψε(x, t) ≤ j, ∀(x, t) ∈ Rn × [0, 1] and m ∈ {1, 2, 3};
‖∇ψε(·, t)‖L2(Rn) = c−1‖∇ψ(·, t)‖L2(Rn) ≤ 1 ≤ j ∀t ∈ [0, 1].

118



Thus ψε(·, t) ∈ Aj and∇ψε(·, t) ∈ Bj ∀t ∈ [0, 1].
Step 3: We inject ψε into the inequality (5.112) and deduce the desired result.
Indeed, we have for a, b ∈ [0, 1], a ≤ b

‖V (b)‖(ψε(·, b))− ‖V (a)‖(ψε(·, a))−
ˆ b

a
δ(V (t), ψε(·, t))(hε(t)) dt

−
ˆ b

a

ˆ
Rn
∂tψε(·, t) d‖V (t)‖dt ≤ c12‖ψε‖C2δ(T )ε−8 ≤ ε.

(6.3)

where we used ‖ψε‖C2 ≤ 1. We recall that by (1.13) we have

δ(V (t), ψε(·, t))(hε(t)) = δV (t)(ψεhε) +

ˆ
Rn×Gd,n

S⊥∇ψε · hε(t) dV (t). (6.4)

Applying (5.118) and (5.119) with V = V (t) , ϕ = ψε(·, t) knowing that j ≤ 1
2ε
− 1

6 we deduce that
there exists ε0 ∈ (0, 4−6) depending only on M and n such that, for any ε ∈ (0, ε0) one has, for all
t ∈ [0, 1]

δV (t)(ψε(·, t)hε(t)) ≤ −
ˆ
Rn

ψε(·, t)|Φε ∗ δV (t)|2

Φε ∗ ‖V (t)‖+ ε
dx+ ε

1
4

(ˆ
Rn

ψε(·, t)|Φε ∗ δV (t)|2

Φε ∗ ‖V (t)‖+ ε
dx+ 1

)
(6.5)

and that

−
ˆ
Rn

ψε(·, t)|Φε ∗ δV (t)|2

Φεj ∗ ‖V (t)‖+ ε
dx ≤ −

ˆ
Rn
ψε(·, t)|hε(t)|2d‖V (t)‖+ε

1
4

(ˆ
Rn

ψε(·, t)|Φε ∗ δV (t)|2

Φε ∗ ‖V (t)‖+ ε
dx+ 1

)
(6.6)

thus combining (6.5), (6.6) and using ‖ψε‖∞ ≤ 1 and (6.2) we deduce that

ˆ b

a
δV (t)(ψε(·, t)hε(t)) dt ≤ −

ˆ b

a

ˆ
Rn
ψε(·, t)|hε(t)|2 d‖V (t)‖dt+ ε

1
4 (2M + 4) . (6.7)

From (6.3) , (6.4) and (6.7), using ε ≤ ε
1
4 we infer that

‖V (b)‖(ψε(·, b))− ‖V (a)‖(ψε(·, a)) ≤
ˆ b

a

ˆ
Rn×Gd,n

−ψε(·, t)|hε(t)|2 + S⊥∇ψε · hε(t) dV (t)dt

+

ˆ b

a

ˆ
Rn
∂tψε(·, t) d‖V (t)‖dt+ ε

1
4 (2M + 5) .

From Lemma 6.1.1 we infer that

‖V (b)‖(ψε(·, b))− ‖V (a)‖(ψε(·, a)) ≤
ˆ b

a

ˆ
Rn

1

4

|S∇ψε(·, t)|2

ψε(·, t)
+∇ψε(·, t) · hε(t) + ∂tψε(·, t) dV (t)dt

+ ε
1
4 (2M + 5) ,

(6.8)
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where dividing by ψε is possible as ψε > 0. From (5.120) for V = V (t) and g = ∇ψε(·, t) we have,
for any ε ∈ (0, ε0), ∣∣∣ ˆ b

a

ˆ
Rn
hε(t) · ∇ψε(·, t) d‖V ‖(t) + δV (t) (∇ψε(·, t)) dt

∣∣∣
≤ ε

1
4 (b− a) + ε

1
4

ˆ b

a

(ˆ
Rn

|Φε ∗ δV (t)|2

Φε ∗ ‖V ‖(t) + ε
dx

) 1
2

dt

≤ ε
1
4 + ε

1
4

(ˆ 1

0

ˆ
Rn

|Φε ∗ δV (t)|2

Φε ∗ ‖V ‖(t) + ε
dxdt

) 1
2

≤ ε
1
4 (1 + (2M)

1
2 ) ≤ ε

1
4 (1 + 2M), as 1 ≤M ≤ 2M,

where we used Jensen inequality. This gives,
ˆ b

a

ˆ
Rn
hε(t) · ∇ψε(·, t) d‖V ‖(t)dt ≤ −

ˆ b

a
δV (t) (∇ψε(·, t)) dt+ ε

1
4 (1 + 2M)

=

ˆ b

a

ˆ
Rn
−S : ∇2ψε(·, t)dV (t)dt+ ε

1
4 (1 + 2M).

From (6.8) we infer that

‖V (b)‖(ψε(·, b))− ‖V (a)‖(ψε(·, a)) ≤
ˆ b

a

ˆ
Rn

1

4

|S∇ψε(·, t)|2

ψε(·, t)
− S : ∇2ψε(·, t) + ∂tψε(·, t) dV (t)dt

+ ε
1
4 (4M + 6) .

We note that ψε ≥ c−1ψ, ∇mϕε = c−1∇mϕ, ∀m ∈ {1, 2} and that ψ is a barrier function, hence
Lemma 6.1.3 implies

1

4

|S∇ψε(·, t)|2

ψε(·, t)
− S : ∇2ψε(·, t) + ∂tψε(·, t) ≤ c−1

(
1

4

|S∇ψ(·, t)|2

ψ(·, t)
− S : ∇2ψ(·, t) + ∂tψ(·, t)

)
≤ 0

this implies
‖V (b)‖(ψε(·, b))− ‖V (a)‖(ψε(·, a)) ≤ ε

1
4 (4M + 6) .

We conclude from the uniform boundedness of the mass (Remark 5.35) and from ‖ψ‖C2 ≤ c that

‖V (b)‖(ψ(·, b))− ‖V (a)‖(ψ(·, a)) ≤ 4cε
1
6 (M + 1) + cε

1
4 (4M + 6) ≤ cε

1
6 (8M + 10) ≤ c13ε

1
6

where we set c13 = c(8M + 10). This finishes the proof.

We show that the mass measure of a limit of the spacetime approximate MCF satisfies the
external varifold comparison principle.

Corollary 6.2.3. (External varifold comparison principle) Let V ∈ Vd(Rn) of compact support and (µ(t))t∈[0,1]

be the mass measure of a limit of the spacetime approximate MCF starting from V (Definition 6.2.1). We
have the following:

1. (µ(t))t∈[0,1] satisfies the the external varifold comparison principle, i.e. if

µ(0)(B(a,R)) = 0 =⇒ µ(t)(B(a,
√
R2 − dt)) = 0, t ∈ [0, 1] ∩ [0, R2/2d].
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2. sptµ(t) is bounded by the convex hull of sptV for all t ∈ [0, 1]. In particular
⋃

t∈[0,1]

sptµ(t) is

bounded.

Proof. We start by proving the external varifold varifold principle. Let ε ∈ (0, 1), (Vε(t))t∈[0,1] the
approximate MCF starting from E . Define, ψ(x, t) = γ(|x− a|2 + 2dt) such that

γ(r) =

{
(R2 − r)4 for r ≤ R2,
0 for r > R2.

Proposition 5.2.2 ensures that the limit of the piecewise constant approximate MCF converges to
(Vε(t))t∈[0,1], hence, Lemma 6.2.2 infers that

‖Vε(t)‖(ψ(·, t)) ≤ ‖Vε(0)‖(ψ(·, 0)) + c13ε
1
6 .

Taking the limit in ε, we infer from Proposition 5.3.10

µ(t)(ψ(·, t)) ≤ µ(0)(ψ(·, 0)).

By construction, ψ(·, t) > 0 on B(a,
√
R2 − 2dt) hence

µ(0)(B(a,R)) = 0 =⇒ µ(t)(B(a,
√
R2 − dt)) = 0, t ∈ [0, 1] ∩ [0, R2/2d].

The convex barrier principle is a direct adaptation of the proof of [12, Theorem 3.8] using the
sphere barrier to external varifolds.

Corollary 6.2.4. (Decay of the mass) Let V0 ∈ Vd(Rn) of compact support and (µ(t))t∈[0,1] the mass
measure of a limit spacetime approximate MCF starting from V0. From Remark 5.2.7 and the boundedness
of sptµ(t)∀t ∈ [0, 1] (Corollary 6.2.3), we deduce that the function t 7→ µ(t)(Rn) is nonincreasing.

In order to prove the nontriviality of the limit of the spacetime MCFs, we first extract a suffi-
cient relation between δ(T ) and ε allowing the convergence of the mass measure of the piecewise
constant approximate MCF

(
V pc
ε,T (t)

)
t∈[0,1]

to the mass measure of the limit of the spacetime ap-

proximate MCF (µ(t))t∈[0,1] when ε and δ(T ) converge to 0 simultaneously.

Lemma 6.2.5. Let V0 ∈ Vd(Rn) be of compact support. Let (εj)j∈N ∈ (0, 1) be a sequence converging to 0
and ∀j ∈ N, let (Vεj (t))t∈[0,1] be the approximate MCF starting from V0 converging to (µ(t))t∈[0,1] the mass
measure of a limit of the spacetime approximate MCF starting from V0 (Definition 6.2.1). Let (Tj)j∈N be
a sequence of subdivisions satisfying (5.34) and

(
V pc
εj ,Tj (t)

)
t∈[0,1]

be the corresponding piecewise constant

approximate MCF. Assume that

δ(Tj)ε−n−11
j exp

(
c10,Mε

−n−7
j

)
−−−→
j→∞

0.

Then
‖V pc

εj ,Tj (t)‖
∗−−−⇀

j→∞
µ(t), ∀t ∈ [0, 1].
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Proof. Let (Vε,T1(t))t∈[0,1] and (Vε,T2(t))t∈[0,1] be two time-discrete approximate MCFs associated
with two subdivisions T1, T2 satisfying (5.34) and starting from V0 ∈ Vd(Rn). We know from
Proposition 5.1.11 that for all t ∈ [0, 1] and for δ = max{δ(T1), δ(T2)}

∆(‖Vε,T1(t)‖, ‖Vε,T2(t)‖) ≤ c10,Mδε
−n−11 exp

(
c10,Mε

−n−7
)
.

We let δ(T2)→ 0 and infer from Theorem 5.2.1 that for all t ∈ [0, 1],

∆(‖Vε,T1(t)‖, ‖Vε(t)‖) ≤ c10,Mδ(T1)ε−n−11 exp
(
c10,Mε

−n−7
)
.

Let (εj)j∈N → 0 such that ‖Vεj‖(t)
∗−⇀ µ(t), ∀t ∈ [0, 1], where (µ(t))t∈[0,1] is a mass measure of a

limit of the spacetime approximate MCF starting from V0. The boundedness of sptµ(t), t ∈ [0, 1]
(Corollary 6.2.3) implies that ∆(‖Vεj (t)‖, µ(t)) −−−→

j→∞
0 ∀t ∈ [0, 1].

Let (Tj)j∈N be a sequence of subdivisions satisfying (5.34) and the condition

δ(Tj)ε−n−11
j exp

(
c10,Mε

−n−7
j

)
−−−→
j→∞

0, (6.9)

we can assert that ∀t ∈ [0, 1]

∆(µ(t), ‖Vεj ,Tj (t)‖) ≤ ∆(µ(t), ‖Vεj (t)‖) + ∆(‖Vεj (t)‖, ‖Vεj ,Tj (t)‖) −−−→
j→∞

0.

Again, by the boundedness of sptµ(t), we deduce that ‖Vεj ,Tj (t)‖
∗−−−⇀

j→∞
µ(t), ∀t ∈ [0, 1]. Finally,

from Proposition 5.2.2 we deduce that ‖V pc
εj ,Tj (t)‖

∗−−−⇀
j→∞

µ(t), ∀t ∈ [0, 1].

The following lemma provides a quantitative continuity property on evolution by C1 diffeo-
morphisms of open sets with respect to balls.

Lemma 6.2.6. Let E be an open set in Rn. Let f be a C1 diffeomorphism of Rn, assume that δ :=
max{‖f − id‖∞, ‖Jf − 1‖∞} < 1. Let B = B(a,R) for some a ∈ Rn and R ∈ R+. One has

|Ln(B ∩ f(E))− Ln(B ∩ E)| ≤ δc14,

where c14 is a constant depending only on n and R.

Proof. Indeed, we have by the area formula:

Ln(B ∩ f(E)) =

ˆ
f(E)

χB dLn =

ˆ
E
χf−1(B) Jf dLn.

This gives

|Ln(B ∩ f(E))− Ln(B ∩ E)| =
∣∣∣ ˆ

E
χf−1(B) Jf dLn −

ˆ
E
χB dLn

∣∣∣
≤
ˆ
E
χB‖Jf − 1‖∞dLn + ‖Jf‖∞

ˆ
E
|χf−1(B) − χB| dLn

≤ δLn(B) + 2Ln(B(a,R+ δ) \B(a,R− δ)),
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where we used
‖Jf‖ ≤ ‖Jf − 1‖+ 1 ≤ δ + 1 ≤ 2.

If δ > R then Ln(B(a,R+ δ)\B(a,R− δ)) ≤ Ln(B(a, 2δ)) ≤ δ2nωn. Otherwise, by the mean value
theorem applied on the function x 7→ xn we have

(R+ δ)n − (R− δ)n ≤ 2nδ(R+ δ)n−1,

hence,

Ln(B(a,R+ δ) \B(a,R− δ))
≤ ωn ((R+ δ)n − (R− δ)n)

≤ 2nωnδ(R+ δ)n−1 ≤ 2nωnδ(R+ 1)n−1,

this implies that
|Ln(B ∩ f(E))− Ln(B ∩ E)| ≤ c14δ,

with c14 = ωnR
n + 2 max{2nωn, 2nωn(R+ 1)n−1}, this concludes the proof of the claim.

We make the following remark about open partitions and the approximate flow of their bound-
aries.

Remark 6.2.7. Given an open partition E , one can define a piecewise approximate MCF for the

integral varifold associated to ∂E =
N⋃
i=1

∂Ei, we denote it by (∂E)ε,T (t) =
N⋃
i=1

(∂Ei)ε,T (t). The

open partition character is preserved through the flow as the push-forward maps involved in the
construction of the flow are C1 diffeomorphisms.

We investigate the change of volume, restricted to fixed balls of Rn, of the evolution by ap-
proximate mean curvature of an open partition. For simplicity, we state the result for uniform
subdivisions.

Corollary 6.2.8 (Change of volume). Let ε ∈ (0, 1), 1 ≤ M and T be a uniform subdivision of [0, 1], of

time step ∆t > 0, satisfying (5.34). Let E =
N⋃
i=1

Ei be an open partition of Rn such that Ln−1 (∂E) ≤M .

Let (∂E)ε,T (t) =
N⋃
i=1

(∂Ei)ε,T (t) be the piecewise-constant approximate MCF with respect to T starting

from E , and (E)ε,T (t) =
N⋃
i=1

(Ei)ε,T (t) the corresponding open partition.

Then, for any i ∈ {1, . . . , N} and (a,R) ∈ (Rn,R+) one has

|Ln(B(a,R) ∩ (Ei)ε,T (t+ ∆t))− Ln (B(a,R) ∩ (Ei)ε,T (t)) | ≤ c14ε,

for any t ∈ [0, 1−∆t], where c14 is a constant depending only on n and R.

Proof. Applying Lemma 6.2.6 in our context with f = id + ∆t hε

(
· ,

N⋃
i=1

(∂Ei)ε,T (t)

)
. From Propo-

sition 5.1.2, (5.23), (5.34), (5.35) one has

max{‖f − Id‖∞, ‖Jf − 1‖∞} ≤ c4(M + 1)ε−4 ≤ ε < 1,
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this gives
|Ln(B(a,R) ∩ (Ei)ε,T (t+ ∆t))− Ln (B(a,R) ∩ (Ei)ε,T (t)) | ≤ c14ε,

for any t ∈ [0, 1−∆t] and this finishes the proof of Corollary 6.2.8.

Theorem 6.2.9 (Nontriviality of the limit of the spacetime approximate MCF).

Let E =
N⋃
i=1

Ei be an open partition of Rn and let µ(t) be the mass measure of a limit of the spacetime

approximate MCF flow starting from ∂E (Definition 6.2.1). Then, there exists t0 > 0 such that µ(t)(Rn) >
0,∀t ∈ [0, t0].

Proof. Let p ∈ {1, . . . , N} with Ep bounded. Denote O := Ep and by ∂O the varifold associated
to its boundary. Let (εj)j∈N be a sequence converging to 0 such that if we denote the approximate
MCF starting from ∂E by

(
(∂E)εj (t)

)
t∈[0,1]

, we have:

‖(∂E)εj (t)‖
∗−−−⇀

j→∞
µ(t) ∀t ∈ [0, 1].

Let (Tj)j∈N be a family of subdivisions of [0, 1], of uniform time step

∆tj :=
⌈
ε−n−12
j exp

(
c10,Mε

−n−7
j

)⌉−1
.

For j large enough, Tj satisfies (5.34). In the proof, we denote for simplicity (∂E)j(t) := (∂E)pcεj ,Tj (t)

to be the piecewise approximate MCF starting from ∂E ; as

∆tj ≤ εn+12
j exp

(
−c10,Mε

−n−7
j

)
= εn+11

j exp
(
−c10,Mε

−n−7
j

)
o(1),

we deduce from Lemma 6.2.5 that

‖(∂E)j(t)‖
∗−−−⇀

j→∞
µ(t) ∀t ∈ [0, 1].

The goal now is to prove that there exists t0 ∈ (0, 1], a constant ω̃ > 0 such that µ(t0)(Rn) ≥ ω̃,
by the decay property of the mass (Corollary 6.2.4) we obtain µ(t)(Rn) ≥ µ(t0)(Rn) ≥ ω̃ for every
t ∈ [0, t0] and this finishes the proof of the theorem.
We carry on with the proof, let (a,R) ⊂ Rn × R+ be such that B(a,R) ⊂ O.
Define ψ(x, t) = γ(|x− a|2 + 2dt) such that

γ(r) =

{
(R2 − r)4 for r ≤ R2,
0 for r > R2.

Let (∂Oj(t))t∈[0,1] (resp. (Oj(t))t∈[0,1]) denotes the evolution in time of ∂O (resp. O) under the
piece-wise approximate MCF of ∂E . For j large enough, we have c12∆tj ε

−8
j ≤ εj and εj ∈ (0, ε0),

hence from Proposition 6.2.2

‖(∂E)j(t)‖(ψ(·, t))− ‖(∂E)j(0)‖(ψ(·, 0)) ≤ c13ε
1
6
j ∀t ∈ [0, 1].
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By construction of ψ, we can assert that ‖(∂E)j(0)‖(ψ(·, 0)) = 0. We set t0 = R2

8d , for any t ∈ [0, t0]
and x ∈ B := B

(
a, R2

)
we have

ψ(x, t) = ϕ(|x− a|2 + 2dt) ≥
(
R2 −

(
R2

4
+ 2dt0

))4

=
R8

16
.

This yields:

‖(∂E)j(t)‖(ψ(·, t)) ≥ R8

16
‖(∂E)j(t)‖(B) ≥ R8

16
Ln−1 (∂Oj(t) ∩B)

and that Ln−1 (∂Oj(t) ∩B) −−−→
j→∞

0 uniformly on [0, t0].

We have the following two cases:
Case1 : There exists a subsequence (α(j))j∈N −−−−→j→+∞

+∞ such that ∀j ∈ N, Ln
(
Oα(j)(t0) ∩B

)
≥

1
4L

n(B); then, we can infer from the isoperimetric inequality that

Ln−1
(
∂Oα(j)(t0)

)
≥ cn

(
Ln
(
Oα(j)(t0)

))n−1
n ≥ cn

(
Ln
(
Oα(j)(t0) ∩B

))n−1
n ≥ cn

(
1

4
Ln(B)

)n−1
n

:= ω̃

for some constant cn > 0 depending only on n, taking j to +∞we deduce that

µ(t0)(Rn) = lim
j
‖(∂E)α(j)(t0)‖(Rn) ≥ lim inf

j
Ln−1

(
∂Oα(j)(t0)

)
≥ ω̃

and this finishes the proof.
Case2 : There is no such sequence, this means that there exists j0 ∈ N such that

∀j ≥ j0, Ln (Oj(t0) ∩B) <
1

4
Ln(B).

We have Ln (Oj(0) ∩B) = Ln(B) and Ln (Oj(t0) ∩B) < 1
4L

n(B), by Corollary 6.2.8 we infer that
for any t ∈ [0, 1−∆tj ] ∣∣Ln (Oj(t+ ∆tj) ∩B)− Ln (Oj(t) ∩B)

∣∣ ≤ c14εj .

Then, taking j0 larger so that c14εj ≤ 1
4L

n(B) we can infer that there exists s (depending on j)
∈ [0, t0] such that

1

2
Ln(B) ≥ Ln (Oj(s) ∩B) ≥ 1

4
Ln(B)

for all j ≥ j0. By the relative isoperimetric inequality ([5, Remark 3.50]), there exists a constant
c̃n > 0 (depending only on n) such that for any j ≥ j0

Ln−1 (∂Oj(s) ∩B) ≥ c̃n min{Ln(Oj(s) ∩B)
n−1
n ,Ln (B \ Oj(s))

n−1
n } ≥ c̃n

(
1

4
Ln(B)

)n−1
n

this yields a contradiction as Ln−1 (∂Oj(t) ∩B) −−−−→
j→+∞

0 uniformly on [0, t0] .

Conclusion: there exists ω̃ > 0 such that µ(t)(Rn) ≥ ω̃ > 0∀t ∈ [0, t0], this finishes the proof of
Theorem 6.2.9.

125



Remark 6.2.10 (Lower bound on the extinction time). The proof of Theorem (6.2.9), up to a slight
technical change, shows that the flow is nontrivial for t ∈ [0, t0) where

t0 = max{R > 0, B(a,R) ⊂ Ej ∈ E , for some a ∈ Rn andEj bounded}.

Concretely, instead of t0 = R2

8d one could set t0 =
R2

2d
− η with η very small and instead of B :=

B(a, R2 ) one could set B := B(a, η). We then conclude by letting η → 0.

6.3 Avoidance of evolving spheres

In Proposition 6.3.1 we prove the avoidance principles with respect to spheres evolving by the law
in (6.1), either when the varifold is supported outside the sphere, or when it is supported inside
the sphere; as a consequence, we deduce the convex set barrier principle. The proof consists of
plugging a suitable barrier function in the spacetime Brakke inequality and using Lemmas 6.1.1
and 6.1.3.

Proposition 6.3.1. (Barriers) Let (µ(t))t∈[0,1] be the mass measure of a spacetime Brakke flow (Definition
5.3.4) starting from a varifold V0 ∈ Vd(Rn) of compact support. We have:

1. Sphere barrier to external varifolds:

if µ(0)(B(a,R)) = 0 then µ(t)(B(a, (R2 − 2dt)
1
2 ) = 0 ∀t ∈ [0, 1] ∩ [0, R2/2d]. (6.10)

2. Convex set barriers: ⋃
t∈[0,1]

sptµ(t) is contained in the convex hull of spt ‖V0‖. (6.11)

3. Sphere barrier to internal varifolds:

if sptµ(0) ⊂ B(a,R) then sptµ(t) ⊂ B(a, (R2 − 2dt)
1
2 ) ∀t ∈ [0, 1] ∩ [0, R2/2d]. (6.12)

Proof. We start with the proof of the sphere barrier to external varifolds (6.10). Define ψ(x, t) =
γ(|x− a|2 + 2dt) such that

γ(r) =

{
(R2 − r)β for r ≤ R2,
0 for r > R2

with β > 2 (so that both ψ and γ areC2), then, easy computations show that ψ is a barrier function.
Plugging ψ into the integral Brakke inequality (5.116) we obtain for any t1 ∈ [0, 1] ∩ [0, R2/2d]
(removing the dependence on variables and noting h = h(·, ·, λ) for simplicity)

µ(t1)(ψ(·, t1))− µ(0)(ψ(·, 0)) ≤
ˆ t1

0

ˆ
Rn×Gd,n

−ψ|h|2 + S⊥∇ψ · h+ ∂tψ dλ.
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We note that by assumption, µ(0)(ψ(·, 0)) = 0 as ψ(·, 0) vanishes outside B(a,R). By Lemma 6.1.1,
(5.114) and (δλ)s = 0 we have

µ(t1)(ψ(·, t1)) ≤
ˆ t1

0

ˆ
{(x,S,t),ψ 6=0}

1

4

|S∇ψ|2

ψ
+∇ψ · h+ ∂tψ dλ

=

ˆ t1

0

ˆ
{(x,S,t),ψ 6=0}

1

4

|S∇ψ|2

ψ
− S : ∇2ψ + ∂tψ dλ.

Hence, by Lemma 6.1.3 we deduce that µ(t1)(ψ(·, t1)) = 0 (as ψ ≥ 0). By construction, ψ(·, t1) > 0

on B(a, (R2 − 2dt1)
1
2 ), this implies that µ(t1)(B(a, (R2 − 2dt1)

1
2 )) = 0 and finishes the proof of

(6.10).

Proof of the convex set barriers : using the sphere barrier to external varifolds (6.10), the proof is a
direct adaptation of the proof of [12, Theorem 3.8].

The proof of (6.12) is similar to the proof of (6.10). We define a test function ψ(x, t) = γ(|x− a|2 +
2dt) such that

γ(r) =

{
0 for r ≤ R2,
(r −R2)β for r > R2

with β > 2 (so that both ψ and γ areC2). Construct aC2 function ψ̃ equal to ψ onB(a, 2R) and to 0
outside B(a, 3R). By the convex barrier principle,

⋃
t∈[0,1] sptµ(t) ⊂ B(a,R) thus on the supports

on sptµ(t) ∩ {ψ̃ > 0}we have the formula

1

4

|S∇ψ̃|2

ψ̃
− S : ∇2ψ̃ + ∂tψ̃ ≤ 0. (6.13)

Finally, by the spacetime Brakke inequality (5.116), Lemma 6.1.1 and (6.13), we infer that for any
t ∈ [0, 1] ∩ [0, R2/2d]

µ(t)(ψ̃(·, t)) ≤ µ(0)(ψ̃(·, 0)) = 0 and µ(t)(ψ̃(·, t)) = 0.

Hence, as ψ̃(·, t) > 0 onB(a, 2R)\B(a, (R2−2dt)
1
2 ) and sptµ(t) ⊂ B(a,R) we infer that sptµ(t) ⊂

B(a, (R2 − 2dt)
1
2 ) and we finish the proof.

Corollary 6.3.2 (Non-existence of compact stationary varifolds). We call a varifold V ∈ Vd(Rn)
stationary if:

∀X ∈ C1
c (Rn,Rn), δV (X) = 0.

Consider the measure λ = V (t)⊗dt on Rn×Gd,n× [0, 1] with V (t) = V, ∀t ∈ [0, 1], clearly h(·, ·, λ) = 0
and λ is a spacetime Brakke flow. The sphere barrier to internal varifolds property ((6.12)) implies that
(‖V (t)‖)t∈[0,1] = (‖V ‖)t∈[0,1] avoids the motion of spheres, hence V = ∅. Conclusion: there exists no
compact stationary varifold of any codimension. In particular, it proves that there exists no compact minimal
surface (a stationary Brakke flow in general), of any codimension, in Rn (which was already known).
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6.4 Avoidance principle for codimension 1 spacetime Brakke flows, in-
clusion in level set flows

In this section we prove that the mass measure of a codimension 1 spacetime Brakke flow avoids
smooth codimension 1 mean curvature flows. The proof is a slight adaptation of the proof of [35,
10.5].

We start by showing the lower semi-continuity property of the map t 7→ µ(t).

Proposition 6.4.1 (Lower semi-continuity). Let V0 ∈ Vd(Rn) of compact support, (µ(t))t∈[0,1] the mass
measure of a spacetime Brakke flow starting from V0 (Definition 5.3.4). Then

(i) For anyψ ∈ C2
c (Rn,R+), the map t 7→ µ(t)(ψ)−Ct is nonincreasing for anyC ≥ ‖∇2ψ‖∞‖V0‖(Rn).

(ii) For any ϕ ∈ C2
c (Rn × [0, 1],R+) and any s ∈ (0, 1],

lim
t→s−

µ(t)(ϕ(·, t)) ≥ µ(s)(ϕ(·, s)). (6.14)

Proof. Let ψ ∈ C2
c (Rn,R+), from the integral Brakke inequality (5.116), and using ab ≤ 1

2(a2 + b2)
we obtain for every s, r ∈ [0, 1] such that 0 ≤ r ≤ s ≤ 1 (for simplicity we denote h = h(·, ·, λ) )

µ(s)(ψ)− µ(r)(ψ) ≤ −
ˆ s

r

ˆ
Rn
ψ|h|2 dµ(t)dt+

ˆ s

r

ˆ
Rn
S⊥(∇ψ) · h dλ

≤
ˆ s

r

ˆ
Rn
−ψ|h|2 +

1

2
ψ|h|2 +

1

2

|∇ψ|2

ψ
dµ(t)dt

≤ (s− r)‖∇2ψ‖∞‖V0‖(Rn) by [46, Lemma 3.1]

where we used µ(t)(Rn) ≤ ‖V0‖(Rn) (Remark 5.3.5 (ii)), this proves (i).
Let s ∈ [0, 1], we first prove (ii) for time-independent test functions. Let ϕ ∈ C2

c (Rn × [0, 1],R+),
for ψ = ϕ(·, s) and C := ‖∇2ψ‖∞‖V0‖(Rn) we know from (i) that the map t 7→ ‖µ(t)‖(ψ) − Ct
is nonincreasing. Thus, lim

t→s−
(µ(t)(ψ)− Ct) ≥ µ(s)(ψ) − Cs which yields lim

t→s−
µ(t)(ϕ(·, s)) ≥

µ(s)(ϕ(·, s)). Then, (ii) follows from∣∣ lim
t→s−

µ(t)(ϕ(·, s)− ϕ(·, t))
∣∣ ≤ lim

t→s
(s− t)‖ϕ‖C1‖V0‖(Rn) = 0.

In the following lemma we prove a continuity property of Brakke flows and the mass measures
of spacetime Brakke flows (seen as a subset of Rn).

Lemma 6.4.2 (A continuity property). Let (µ(t))t∈[0,1] be the mass measure of a spacetime Brakke flow
(Definition 5.3.4) or a mass measure of a Brakke flow and starting from some V0 ∈ Vd(Rn). Then, for any
r > 0 and a set A of Rn, we have ∀ t ∈ [0, 1] ∩

[
0, r2/2d

]
sptµ(0) ∩ (A+Br) = ∅ =⇒ sptµ(t) ∩

(
A+B√r2−2dt

)
= ∅.
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Proof. Let µ(t) be defined as in the lemma, let A be a set of Rn such that sptµ(0) ∩ (A+Br) = ∅.
We write A + Br =

⋃
x∈A

Br(x), hence sptµ(0) ∩ Br(x) = ∅ ∀x ∈ A. By the avoidance principle for

external varifolds (6.10) we can infer that

sptµ(t) ∩B√r2−2dt(x) = ∅ ∀t ∈ [0, 1] ∩ [0, r2/2d] ∀x ∈ A,

the result follows from noting that A+B√r2−2dt =
⋃
x∈A

B√r2−2dt(x). The result is valid for Brakke

flows and mean curvature flows as it is based only on the avoidance principle for external varifolds
(which is true for Brakke flows and MCFs by [12, Theorem 3.7]).

We now show that the mass measures of a codimension 1 spacetime Brakke flow avoids the
MCF of C2 hypersurfaces.

Theorem 6.4.3 (Avoidance of smooth MCFs). Let V0 ∈ Vn−1(Rn) of compact support, let (µ(t))t∈[0,1]

be the mass measure of a spacetime Brakke flow starting from V0 (see Definition 5.3.4). Let (Mt)t∈[0,1] be
the MCF of a compact C2 hypersurfaceM (M0 =M). We have:

sptµ(0) ∩ sptM = ∅ =⇒ sptµ(t) ∩ sptMt = ∅ ∀ t ∈ [0, 1].

Proof. The idea is to construct a test function ψ(·, t) out of the distance function to Mt vanish-
ing outside a neighborhood of Mt and prove that µ(t)(ψ(·, t)) = 0 ∀ t ∈ [0, 1]. We assume that
sptµ(0) ∩M = ∅.
Step 1: (Construction, properties of the test function). Let Et be the compact region bounded by
Mt, define

r(x, t) =

{
−dist(x,Mt), x ∈ Et,
dist(x,Mt), x ∈ Ect .

Fix γ > 0 enough small so that
dist(sptµ(0),M) > γ,

and that r(x, t) is smooth on a open spacetime-neighborhood of U , where

U ≡ {(x, t) : −γ < r(x, t) < γ, 0 ≤ t ≤ 1}.

This is possible due to the compactness of [0, 1]. Let β > 0 be such that

β > max
{

2 ,
3

4
(1 + γmax

U
‖∇2r‖)

}
. (6.15)

Define the test function

ψ = ϕ ◦ r =

{
(γ − |r|)β |r| ≤ γ;
0 |r| ≥ γ. (6.16)

Then ψ ∈ C0
c (Rn × [0, 1],R+), ψ vanishes except on U , and ψ is C2 except alongMt.

Observe that µ(0)(ψ(·, 0)) = 0, we aim to show that this remains true for t ∈ [0, 1] and this
completes the proof. We derive the expressions of the first two derivatives of ψ and ϕ and a prop-
erty between those of ϕ that will be used later in the proof. We have (outsideMt) the following
identities:

∇ψ = ϕ′(r)∇r, ∇2ψ = ϕ′′(r)∇r ⊗∇r + ϕ′(r)∇2r, ∂tϕ = ϕ′(r)∂tr, (6.17)
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Figure 6.2: Graph of ϕ used in the definition of the test function ψ in (6.16)

and

ϕ(t) = (γ − |t|)β,
ϕ′(t) = −sign(t)β(γ − |t|)β−1,

ϕ′′(t) = β(β − 1)(γ − |t|)β−2,

(ϕ′)2

ϕ
(t) = β2(γ − |t|)β−2.

(6.18)

Step2 : We show that if µ(s)(ψ(·, s)) = 0, s ∈ [0, 1) then there exists τ > 0 such that sptµ(t)∩Mt =
∅, ∀t ∈ [s, s+ τ ].
Indeed, µ(s)(ψ(·, s)) = 0 for some s ∈ [0, 1) implies that dist(sptµ(s),Ms) ≥ γ. Assume with-
out loss of generality that sptµ(s) lies outside Es (the compact region bounded by Ms). Ap-
plying Lemma 6.4.2 once with A = Es + Bγ/2, r = γ/2 and (µ(t))t∈[0,1] and another with A =(
Es +Bγ/2

)c
, r = γ/2 and (Ms)t∈[0,1] yields that

∃τ > 0, sptµ(t) ∩ (Es +Bγ/2) = ∅ andMt ∩ (Es +Bγ/2)c = ∅ ∀t ∈ [s, s+ τ ],

thus sptµ(t) ∩Mt = ∅, ∀t ∈ [s, s+ τ ], this concludes step 2.
Step3 : We first prove that if µ(s)(ψ(·, s)) = 0, s ∈ [0, 1) then ∃τ0 > 0 such that µ(t)(ψ(·, t)) =
0 ∀t ∈ [s, s+ τ0]. Let s ∈ [0, 1) be such that µ(s)(ψ(·, s)) = 0, step 2 implies:

∃τ0 > 0, sptµ(t) ∩Mt = ∅, ∀t ∈ [s, s+ τ0]. (6.19)

(6.19) implies that ψ(·, t) is C2 on sptµ(t), ∀ t ∈ [s, s+ τ0], we have from (5.116)

µ(t)(ψ(·, t))− µ(s)(ψ(·, s)) ≤ −
ˆ t

s

ˆ
Rn
ψ(y, t)|h(y, t, λ)|2 dµ(t)(y)dt

+

ˆ t

s

ˆ
Rn×Gd,n

S⊥(∇ψ(y, t)) · h(y, t, λ) dλ(y, S, t) +

ˆ t

s

ˆ
Rn
∂tψ(y, t)µ(t)(y)dt.

By definition of s and Lemma 6.1.1 (we identify by abuse of notation f(y, S, t) with f(y, t) for
f = ψ(y, t)|h(y, t, λ)|2 and f = ∂tψ(y, t) so that the integrals make sense), we have

µ(t)(ψ(·, t)) ≤
ˆ t

s

ˆ
Rn×Gd,n

1

4

|S(∇ψ(y, t))|2

ψ(y, t)
+∇ψ(y, t) · h(y, t, λ) + ∂tψ(y, t) dλ(y, S, t).
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We know that ψ(·, t) is C2 on sptµ(t) for every t ∈ [s, s + τ ], we have by (5.114) and (δλ)s = 0
([Definition 5.3.4,(ii)])

ˆ t

s

ˆ
Rn
∇ψ(y, t) · h(y, t, λ) dµ(t)dt =

ˆ t

s

ˆ
Rn×Gd,n

−S : ∇2ψ(y, t) dλ(y, S, t).

It yields,

µ(t)(ψ(·, t)) ≤
ˆ s+τ

s

ˆ
Rn×Gd,n

1

4

|S(∇ψ(y, t))|2

ψ(y, t)
− S : ∇2ψ(y, t) + ∂tψ(y, t) dλ(y, S, t). (6.20)

We now prove that the integrand of (6.20), that we denote by I , is non-positive for all (x, S, t) ∈
Rn ×Gd,n × [s, s+ τ ] (in fact I ≤ 0 whenever ψ is C2).
Plugging ψ = ϕ(r) into I , and using (6.17) we get

I =

(
1

4

ϕ′2

ϕ
− ϕ′′

)
|S(∇r)|2 + ϕ′

(
−S : ∇2r + ∂tr

)
.

Since (Mt)t∈[0,1] is a smooth mean curvature flow, a standard calculation (see for instance [23,
Identity (6.4)]) tells us that

r (∂tr −∆r) ≥ 0,

on U , where ∆ = ∆Rn . Since ϕ′(r)r ≤ 0, we have

ϕ′(r) (∂tr −∆r) ≤ 0.

Now 1 = |∇r|2 = |S(∇r)|2 + |∇r(~n)|2 and ∆r = S : ∇2r +∇2r(~n) · ~n, where ~n is the unit normal
to the hyperplane S, and therefore

I ≤
(

1

4

ϕ′2

ϕ
− ϕ′′

)
(1− |∇r(~n)|2) + ϕ′∇2r(~n) · ~n. (6.21)

For x ∈ U , define the hyperplane T (x) = ∇r⊥(x), note that ~n = T (~n) + (~n · ∇r)∇r, thus

1 = |∇r|2 = |T (~n)|2 + |∇r(~n)|2, (6.22)

the identity |∇r| = 1 yields∇2r(∇r) = ∇|∇r|2 = 0 and

∇2r(~n) · ~n = ∇2r (T (~n), T (~n)) + 2∇2r (∇r(~n), T (~n)) +∇2r (∇r(~n),∇r(~n))

= ∇2r (T (~n), T (~n)) ≤ ‖∇2r‖|T (~n)|2.
(6.23)

Injecting (6.22) and (6.23) into (6.21) we obtain

I ≤
(

1

4

ϕ′2

ϕ
− ϕ′′ + |ϕ′|‖∇2r‖

)
|T (~n)|2 ≤

(
1

4

ϕ′2

ϕ
− ϕ′′ + |ϕ′|‖∇2r‖

)
. (6.24)

Substituting the computations of (6.18) into (6.24) we obtain

I ≤ β(γ − |r|)β−2

(
1− 3

4
β + (γ − |r|)‖∇2r‖

)
≤ β(γ − |r|)β−2

(
1− 3

4
β + γ‖∇2r‖

)
.
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We obtain by the choice of β that I ≤ 0, therefore from (6.20) we have µ(t)(ψ(·, t)) = 0,∀t ∈
[s, s+ τ0].

Conclusion: Define T = sup{s ∈ [0, 1], µ(t)(ψ(·, t)) = 0 ∀t ∈ [0, s]}. On the one hand, Proposi-
tion 6.4.1 implies that µ(T )(ψ(·, T )) = 0. On the other hand, and if T < 1, step 3 implies that there
exists t > T such that µ(t)(ψ(·, t)) = 0, hence T = 1 and the proof is complete.

Remark 6.4.4. We notice from the proof of Theorem 6.4.3 that the distance between the mass
measure of a spacetime Brakke flow and a smooth flow is nondecreasing. We will see below in
Corollary 6.4.5 that, more generally, the distance between the masses of two spacetime Brakke
flows is nondecreasing.

According to [35, Definition 10.1], a family (Ft)t≥0 of closed sets is a set-theoretic subsolution
to the mean curvature flow if

M0 ∩ F0 = ∅ =⇒ Mt ∩ Ft = ∅ ∀t ≥ 0

for every compact hypersurfaceM0, where (Mt)t≥0 is its MCF. Theorem 6.4.3 states that the mass
measure of a spacetime Brakke flow is a set-theoretic subsolution of the mean curvature flow. This
has some major consequences that we list in the following corollary:

Corollary 6.4.5. Let (µ(t))t∈[0,1] be the mass measure of a spacetime Brakke flow (Definition 5.3.4) starting
from V0 ∈ Vn−1(Rn) of compact support. Let (Mt)t∈[0,1] be a MCF.

1. (Inclusion) Assume that sptµ(0) ⊂M0, then

sptµ(t) ⊂Mt ∀ t ∈ [0, 1].

2. (Coincidence) Assume that sptµ(s) ( Ms for some s ∈ [0, 1], then sptµ(t) = ∅, ∀t > s. In
particular, if µ(s)(Rn) > 0 for some s ∈ [0, 1] then sptµ(t) =Mt, ∀t ∈ [0, s).

3. (Avoidance principle between spacetime Brakke flows) Let (µ1(t))t∈[0,1] be the mass measure of a
spacetime Brakke flow, then

sptµ(0) ∩ sptµ1(0) = ∅ =⇒ dist(sptµ(t), sptµ1(t)) is nondecreasing.

Proof.

1. More generally, set-theoretic subsolutions to MCF are included in the evolution by level
set flow of the initial data, this is a consequence of [35, Inclusion Theorem 10.7]. We then
obtain our result noting that the level set flow and the mean curvature flow coincide on C2

hypersurfaces by [22, Theorem 6.1].

2. Assume that sptµ(s) 6= Ms for some s ∈ [0, 1], as sptµ(s) is closed in Ms, there exists an
open set ofMs that we denote by o satisfying sptµ(s) ⊂Ms\o. PerturbingMs smoothly on
o, one can construct a C2 hypersurfaceM′s containing sptµ(s) and contained in the domain
bounded byMs. By [23, Theorem 4.1] we know that the level set flows (which are equal to
the MCFs in this case) of Ms and M′s split instantaneously. The result follows directly as
(sptµ(t))t≥s is included in both level set flows.

3. It is a consequence of [35, 10.1].
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6.5 List of constants used in the chapter

• c13 (defined in Lemma 6.2.2).

• c14 = ωnR
n + 2 max{2nωn, 2nωn(R+ 1)n−1} (defined in Lemma 6.2.6).
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Approximate mean curvature flows of varifolds and limit Brakke flows

Abstract: This thesis deals with the construction by approximation of mean curvature flows for very
general initial data, in the spirit of Brakke and Kim & Tonegawa’s works based on the theory of varifolds.
We construct, for general varifolds and by iterated push-forwards, an approximate time-discrete mean
curvature flow depending on both a given time step and an approximation parameter. We show the
convergence, when the time step tends to 0, of this time-discrete flow to a unique limit flow, called
the approximate mean curvature flow. An interesting feature of our approach is its generality, since it
provides an approximate notion of mean curvature flow for very general structures of any dimension
and codimension, whether continuous surfaces in the classical sense or point clouds. By coupling this
approximate flow with the canonical time measure, we prove the convergence, as the approximation
parameter tends to 0, to a limit spacetime measure whose generalized mean curvature is bounded. Under
an additional rectifiability assumption, we prove that this limit measure is a spacetime Brakke flow.
Finally, we study in codimension 1 its properties of non-triviality and coincidence with smooth mean
curvature flows.
Keywords: Geometric measure theory; varifolds ; approximate mean curvature flow ; Brakke flow.

Flots approchés de courbure moyenne pour les varifolds et flots de Brakke limites

Résumé : Cette thèse porte sur la construction par approximation de flots de courbure moyenne pour
des données initiales très générales, dans l’esprit des travaux de Brakke et Kim & Tonegawa qui utilisent
la théorie des varifolds. Nous construisons, pour des varifolds généraux et par itérations de poussées en
avant, un flot approché de courbure moyenne discret en temps dépendant à la fois d’un pas de temps
et d’un paramètre d’approximation donnés. Nous montrons la convergence, lorsque le pas de temps
tend vers 0, de ce flot discret vers un flot limite unique, appelé flot approché de courbure moyenne. Un
intérêt de notre approche est sa généralité puisqu’elle fournit une notion approchée de flot de courbure
moyenne pour des structures très générales de dimension et codimension quelconques, que ce soit des
surfaces continues au sens classique ou des nuages de points. En couplant le flot approché obtenu avec
la mesure temporelle canonique, nous prouvons la convergence, lorsque le paramètre d’approximation
tend vers 0, vers une mesure spatio-temporelle limite dont la courbure moyenne généralisée est bornée.
Sous une hypothèse supplémentaire de rectifiabilité, nous prouvons que cette mesure limite est un flot
de Brakke spatio-temporel. Enfin, nous étudions en codimension 1 ses propriétés de non trivialité et de
coïncidence avec les flots réguliers de courbure moyenne.
Mots clés: Théorie de la mesure géométrique ; varifolds ; flot approché de courbure moyenne; flot de
Brakke.
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