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Résumé:

Dans cette thèse, nous nous intéressons à la dynamique de sous-groupes modulaires sur la variété
des SU(2)-caractères . Plus précisément, nous étudions des questions d’ergodicité de l’action de sous-
groupes � du groupe modulaire Modg,n d’une surface compacte Sg,n de genre g et n composantes
de bord. Ces questions ont été naturellement posées après la preuve de Goldman de l’ergodicité du
groupe modulaire sur la variété des caractères. Le premier résultat général dans cette direction est dû à
Funar et Marché, en montrant que le premier sous-groupe de Johnson agit de manière ergodique sur la
variété des caractères, pour toute surface fermée Sg. D’un autre coté, Brown a montré l’existence de
points fixes elliptiques pour tout sous-groupe généré par un homéomorphimse pseudo-Anosov sur le tore
épointé S1,1. Ceci a permis de démontrer la non-ergodicité de tels sous-groupes par Forni, Goldman,
Lawton et Matheus en appliquant la théorie KAM.

Dans la première partie de la thèse, nous étudions une dynamique naturelle sur l’espace des modules
des triangles sphériques de S2 en reliant cette dynamique à la dynamique du groupe modulaire SL(2,Z)
sur la variété des caractères du tore épointé.

La deuxième partie est consacrée à l’étude de l’existence de points fixes elliptiques pour les homéo-
morphismes pseudo-Anosov sur les variétés de caractères des surfaces épointée Sg,n, où g 2 {0, 1}. On
montre que dans le cas de la variété des caractères relative X(⇡1(S1,1), SU(2)) du tore épointé, pour
un ensemble de mesure positive et dense de niveaux de la fonction invariante  , il existe une famille
d’élements pseudo-Anosov qui n’agissent pas érgodiquement sur ces niveaux. Un résultat similaire est
démontré pour un ensemble de paramètres B sur XB(⇡1(S0,4), SU(2)), dans le cas de S0,4, la sphère
à quatre trous. Ces résultats sont combinés pour construire une famille d’éléments pseudo-Anosov sur
le tore à deux trous S1,2, qui admettent un point fixe elliptique.

Nous discutons ensuite de l’action d’un groupe � généré par des twists de Dehn le long d’une paire
de multi-courbes qui remplissent la surface ou plus généralement le long d’une famille des courbes qui
remplissent Sg. Nous montrons dans cette partie qu’il existe deux multi-courbes qui remplissent la
surface de genre deux S2 dont les twists de Dehn associées génèrent un groupe � agissant de manière
non-ergodique sur Hom(⇡1(S2), SU(2)), en trouvant des fonctions rationnelles invariantes explicites.
De même, nous montrons l’existence de fonctions rationnelles invariantes par conjugaison et invariantes
par un sous-groupe � générées par des twists de Dehn le long d’une famille des courbes qui remplissent
la surface fermée non-orientable N4.

Mots Clés: Surfaces de translation et surfaces à petit carreaux, Twists de Dehn, Sous-groupes
modulaires, Variétés des caractères et variétés des représentations.
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Abstract:

In this thesis, we are interested in the dynamics of the mapping class subgroups on the SU(2)-
character variety. More precisely, we deal with ergodicity questions of a subgroup � of the mapping
class group Modg,n of a compact surface Sg,n of genus g and n boundary components. These questions
were naturally raised after Goldman’s proof of the ergodicity of mapping class groups on the SU(2)-
character variety. The first general result in this direction is due to Funar and Marché by showing that
the first Johnson subgroups act ergodically on the character variety, for any closed surfaces Sg. On
the other hand, Brown showed the existence of an elliptic fixed point (or a double elliptic fixed point)
for any subgroup generated by a pseudo-Anosov element on the punctured torus S1,1. This led to the
proof of the non-ergodicity of such subgroups by Forni, Goldman, Lawton, and Mateus by applying
KAM theory.

In the first part of the thesis, we study the natural dynamics of the moduli space of spherical triangles
on S

2 relating these dynamics to the dynamics of the mapping class group on the SU(2)-character variety
of the punctured torus.

The second part is devoted to the study of the existence of elliptic fixed points for pseudo-Anosov
homeomorphisms on the character varieties of punctured surfaces Sg,n, where g 2 {0, 1}. By showing
that near any relative character variety X(⇡1(S1,1), SU(2)) of the once punctured torus, for a set of
positive measure and dense of levels , there exists a family of pseudo-Anosov elements that do not
act ergodically on that level, in the case of the punctured torus S1,1. A similar result holds for a set
of parameters B on XB(⇡1(S0,4), SU(2)), in the case of the four-punctured sphere S0,4. Then these
results can be combined to construct a family of pseudo-Anosov elements on the twice-punctured torus
S1,2 that admit an elliptic fixed point.

We discuss then the action of a group � generated by Dehn-twist along a pair of filling multi-curves
or along a family of filling curves on Sg. We show in this part that there exist two filling multi-curves
on the surface of genus two S2 whose associated Dehn twists generate a group � acting non-ergodically
on Hom(⇡1(S2), SU(2)) by finding explicit invariant rational functions. Similarly, We found invariant
rational functions of a subgroup � generated by Dehn-twists along a family of filling loops on the
character variety of the non-orientable surface N4.

Key Words: Translation surfaces and square-tiled surfaces, Dehn twists, mapping class sub-
groups, Character varieties and representation varieties,
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Chapter 1

Introduction

In this thesis, we are investigating the dynamics of some subgroups of the mapping class group on the

SU(2)-character variety. We consider ⇡1(S) to be the fundamental group of some compact surface

S = Sg,n, where g is the genus and n is the number of boundary components {b1, . . . , bn} of the

surface. We define Hom(⇡1(Sg,n), SU(2)) to be the space of representations of ⇡1(Sg,n) into SU(2).

The group SU(2) acts by conjugacy on Hom(⇡1(Sg,n), SU(2)) and the algebraic quotient is called the

character variety which is denoted by X(⇡1(Sg,n), SU(2)). The mapping class group Mod(Sg,n) (that is

the group of orientation-preserving homeomorphisms of Sg,n fixing point-wise the boundary components

up to orientation-preserving homeomorphisms which are isotopic to the identity of Sg,n) has a natural

action on X(⇡1(Sg,n), SU(2)) by pre-composition.

Any conjugacy class of a boundary component bi is fixed by the action of the mapping class group,

therefore the function fbi([⇢]) := tr(⇢(bi)) is invariant under the mapping class group action, for any

i 2 {1, . . . , n}. Hence any level B of the evaluation map (fb1 , . . . , fbn) is preserved by the action of

Mod(Sg,n). A level of the previous function is called the relative character variety and we denoted it by

XB(⇡1(Sg,n), SU(2)).

For an orientable surface S, Goldman [G1] showed that its character variety/relative character

varieties inherit a symplectic form ! and proved that the mapping class group acts ergodically with

respect to the induced measure [GX1]. A natural question is then to ask whether a subgroup � of

the mapping class group acts ergodically or not. The first result in this direction is given by Goldman

and Xia [GX2] by proving that on the twice-punctured torus, the Torelli group acts ergodically on its

character variety. In [FM], Funar and Marché showed that the first Johnson subgroup, which is the
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group generated by Dehn-twists along separating curves of S, acts ergodically on the character variety.

Recently, Marché and Wol↵ [MW] proved that any non-central normal subgroup of the mapping class

group acts topologically transitively on its SU(2)-character variety. In parallel, the ergodicity of the

mapping class group of non-orientable surfaces was proved by Palesi [P] after introducing a measure �

invariant by the mapping class group.

On the other side, Brown [Br] proved that a pseudo-Anosov element (i.e. the iterates of such an

element preserve no essential simple closed curve) admits an elliptic fixed point or a double elliptic fixed

point for some relative character varieties of the punctured torus S1,1. This recently led to fully proving

the non-ergodicity of such elements by applying KAM theory in [FGLM] by Forni, Goldman, Lawton,

and Matheus.

1.1 Punctured surfaces

We start this thesis by exhibiting in the second Chapter a relationship between natural dynamics on the

space of spherical triangles and the dynamics of the mapping class group on SU(2)-character variety of

the punctured torus S1,1.

In the next Chapter, we generalize in some sense Brown’s approach by constructing elliptic fixed

points for some pseudo-Anosov maps; For punctured surfaces, we consider a group � generated by a

single pseudo-Anosov element. The character variety of the punctured is homeomorphic to a ball of

dimension 3, foliated by the levels of the function  := fb where b is the boundary component of S1,1

defining the relative character varieties which are homeomorphic to two-dimensional spheres expect at

 = �2 where it reduces to a point. We found in this context that near each X(⇡1(S1,1), SU(2)),

for an open dense set of levels , there exists a family of pseudo-Anosov elements which does not act

ergodically on that level (See Theorem 4.3.1 in Chapter 4), in the case of the punctured torus S1,1. A

similar result holds, for a set of parameters B on XB(⇡1(S0,4), SU(2)), in the case of the four-punctured

sphere S0,4 (See Theorem 4.3.2 in Chapter 4). Consider now the two subgroups �n = h⌧4� , ⌧
n
� i and

� = h⌧4↵, ⌧
4
�i of the mapping class group of the twice-punctured torus, where ↵, �, �, and � are some

closed curves in S1,2 as illustrated in Figure 4.4. The degree of freedom in the character variety of

punctured surfaces allows us to combine the previous two results to prove in Chapter 4 the following

result:
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Theorem 1.1.1. 4.4.2 For a homeomorphism f2 2 � satisfying the conditions of Theorem 4.3.1, there

exists N 2 N such that for any n > N , for any f1 2 �n satisfying the conditions of Theorem 4.3.2,

the homeomorphism � = f1 � f2 is pseudo-Anosov. Moreover, � admits a line of elliptic fixed points

of irrational frequency vector over the corresponding relative character varieties XB(⇡1(S1,2), SU(2)).

1.2 Closed surfaces

When the surface is closed, we rather consider a group � generated by a pair of filling multi-curves of

a family of filling curves, such groups contain infinitely many pseudo-Anosov, these elements act by

preserving no class of simple closed curves. A consequence of Theorem 1.1 by Charles and Marché in

[CM] implies more; Pseudo-Anosov elements admit no invariant polynomial functions on the SU(2)-

character varieties. Describing the dynamics of � using square-tiled surfaces allows us to predict the

existence of rational invariant functions, for a suitable �, we establish in Chapter 5, the following:

Theorem 1.2.1. Let S2 be the orientable surface of genus two. Then, there exists a pair of filling

multi-curves whose associated Dehn twists generate a group � that admits an invariant rational function

on Hom(⇡1(S2), SU(2)).

In the non-orientable setting, we have:

Theorem 1.2.2. On the closed non-orientable surface of genus four N4, there exists a family of filling

curves whose associated Dehn twists generate a group � that admits an invariant rational function on

the character variety X(⇡1(N4), SU(2)).

The application of Theorem 6.1 by Fathi [F] ensures the existence of pseudo-Anosov elements in

such a group. Therefore:

Corollary 1.2.1. There exists a pseudo-Anosov element on N4 which does not act ergodically on the

character variety X(⇡1(N4), SU(2)).

We end the thesis by showing the ergodicity of the homeomorphism group fixing a base point p on

the SU(2)-representation variety:

Theorem 1.2.3. The homeomorphism group Homeo+(Sg, p) acts ergodically on the representation

variety Hom(⇡1(Sg, p), SU(2)) with respect to the class of Lebesgue measure, More precisely, ergodicity

is ensured by the action of a group generated by no more than 3g � 1 Dehn twists on Sg.
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Chapter 2

Background

2.1 Surfaces and the mapping class group

Let S = Sg,n be a compact surface of genus g and n boundary, the mapping class group of S that we

denote here by Mod(S) is the group of homeomorphisms of S preserving point-wise the boundaries of S

and preserving the orientation up to homeomorphisms that are isotopic to the identity. So if we denote

the homeomorphism group preserving the orientation by Homeo+(S) and by Homeo0(S) the group of

homeomorphisms isotopic to the identity then the mapping class group of S is the quotient group

Mod(S) := Homeo+(S)/Homeo0(S)

Fixing a point p in the surface, a homeomorphism h 2 Homeo+(S) induces a homomorphism

h⇤ 2 Aut(⇡1(S)) from the fundamental group of S to itself, this gives rise to a homomorphism i :

Homeo+(S) ! Aut(⇡1(S)). In particular, a homeomorphism h that is isotopic to the identity is sent

to a homomorphism in the interior group i.e. h⇤ 2 Inn(⇡1(S)). Thus i descends to a homomorphism

j : Mod(S) ! Out(⇡1(S)). If [h] 2 Mod(S), then by our definition h preserves the orientation, this can

be read in h⇤; we write ⇡1(S) = {a1, . . . , a2g | R(a1, . . . , ag)}, for some relation R, for instance we

can take R(a1, . . . , a2g) =
Qi=g

i=1[ai, ai+g]. The automorphism h⇤ is lifted to an automorphism h̃⇤ that

sends the normalizer of R to itself. The group of automorphisms verifying the previous condition is

called the group of orientation-preserving automorphisms and it is denoted by Aut+(⇡1(S)). Therefore,

the morphism j is defined from Mod(S) into Out+(⇡1(S)). It turns out that
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Theorem 2.1.1 (Dehn-Nielsen-Baer). The homomorphism

j : Mod(S) ! Out+(⇡1(S))

is an isomorphism.

2.1.1 Generating the mapping class group

The simplest elements of the mapping class group are Dehn twists; Let � be a simple closed curve in

S. The Dehn twist ⌧� along the curve � is the homeomorphism defined on a tubular neighborhood of

� as follow:

And ⌧� is the identity elsewhere. In fact, we can generate the mapping class group using Dehn-twists:

Theorem 2.1.2 (Dehn). The mapping class group Mod(S) of a compact orientable surface S is

generated by the Dehn twists along simple closed curves.

We only need a finite number of Dehn twists to generate the mapping class group of closed surfaces

(See [L] for more details)

Theorem 2.1.3 (Lickorish). The mapping class group Mod(Sg) of a closed surface of genus g is

generated by Dehn twists along the 3g � 1 closed curves {�1, . . . , �3g�1}, as shown in Figure 2.1.

Non-orientable case

When the surface is a closed non-orientable surface then the mapping class group is generated by

Dehn twists along two-sided closed curves together with another type of homeomorphism called the

Y -homeomorphisms; Let N be a closed non-orientable surface of genus g � 3 and K ⇢ N is a Klein

bottle with one boundary component b = @K embedded in N , so K is a direct sum of a projective plane

with a Möbuis band of boundary @K. The Y -homeomorphism associated to K is the homeomorphism

defined by sliding a small neighborhood of the projective plane along the Möbuis band once. Notice
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Figure 2.1: Generators

that the square of this homeomorphism is just sliding twice the projective plane, thus the square is

isotopic to the Dehn twist along the boundary of the Möbuis band b = @K. (Following these terms,

the Dehn twist along a curve � can be defined as sliding a point in � along the curve itself).

2.1.2 Relations on the mapping class group

Previously, we saw that Mod(S) is finitely generated, it is natural to ask then about a presentation of

the group Mod(S). If � is sent to �0 by a homeomorphism h then [⌧�0 ] = [h � ⌧� � h�1]. In particular,

if h = ⌧� and � does not intersect � then h(�) is isotopic to �. Hence the two Dehn-twists ⌧� and ⌧�

commutes with each others. This relation i.e ⌧� .⌧� = ⌧�.⌧� is called the disjointness relation.

If i(�, �) = 1 i.e. the geometric intersection between � and � is 1, then we can check on a small

neighborhood of � [ �, which is homeomorphic to a punctured torus, that ⌧�(�) = ⌧�1
� (�), therefore

⌧⌧�(�) = ⌧⌧�1
� (�), hence

⌧� .⌧�.⌧
�1
� = ⌧�1

� .⌧� .⌧�

Thus, we obtain what is called the Braid relation:

⌧� .⌧�.⌧� = ⌧�.⌧� .⌧�

We can deduce another relation called the k-chain relation (See Chapter 09 in [MF]) on the surface

S = Sg,b, whenever g + 2b � 2:

Proposition (k-chain relation). Let �1, . . . , �k be a chain of simple closed curves in S i.e. i(�i, �j) = 1,

if j = i+1 and i(�i, �j) = 0 , otherwise. Let K be a closed regular neighborhood of �1, . . . , �n. Then,

we have:
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• For k even, (⌧�1 . . . ⌧�k)
2k+2 = ⌧�, where � := @K.

• For k odd, (⌧�1 . . . ⌧�k)
k+1 = ⌧�1 .⌧�2 , where �1 [ �2 = @K.

The last three relations, together with relations called the hyperelliptic relations are enough for

representing the mapping class group of the closed surfaces of genus 2:

Theorem 2.1.4 (Birman-Hilden). Setting A := ⌧↵1 , B := ⌧�1 , C := ⌧�1 , D := ⌧�2 and E := ⌧↵2 ,

as shown if Figure 2.2. We have that:

Mod(S2) = {A,B,C,D,E | disjointness, braid, (ABC)4 = E2, [H,A] = 1,H2 = 1}

where H := EDCBA2BCDE.

Figure 2.2: Presentation of Mod(S2)

2.1.3 Classification of elements of the mapping class group

Elements of the mapping class group are sorted into three di↵erent categories:

Theorem 2.1.5 (Nielsen-Thurston). Let h be a homeomorphism of Sg for g > 1, then up to isotopy,

at least one of the following holds:

• h is periodic.

• h is reductive i,e h fixes a simple closed curve in Sg.

• h is pseudo-Anosov.

One can define pseudo-Anosov using this theorem as the homeomorphisms h such that no power

of h preserves an isotopy class of an essential simple closed curve. A more descriptive definition would

be the following (See next section for more details):
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Definition 2.1.1. [h] 2 Mod(S) is said to be pseudo-Anosov, if there exists a half-translation S0 and

a diagonal matrix

D =

0

B@
K 0

0 K�1

1

CA 2 SL(2,R)

with |K| > 1, such that h⇤(S0) = D.S0

2.2 half-translation surfaces

2.2.1 Geometric definition

A half-translation structure on a closed surface S is the data of an atlas of charts (�i, Ui)i2I on S \⌃

for a finite set ⌃ such that the transition maps �i,j : �i(Ui) �! �j(Uj) are half-translations on the

complex plane C i.e. of the form z 7! ±z + c for some c 2 C. The metric dz2 is invariant by the

transition maps. Hence the surface S \ ⌃ is endowed with the flat Riemannian metric dz2. We also

require that the previous metric admits an extension to the surface S. If we look at the circle �r

centered at a point in ⌃ of radius r in S then the charts around the circle can be chosen so that the

image of the developing map along �r is again a Euclidean circle of radius r. Hence the Disk Dr ⇢ S

that consists of points of distance less than r from the singular point is isometric to a flat cone of angle

k⇡ for k 2 N.

Remark 2.2.1. We shall require here that k � 2, otherwise, for instance, Definition 2.1.1 would not

agree with Theorem 2.1.5.

From a half-translation surface, we can construct a translation surface; for a chart (�i, Ui) we can

derive two new charts (��i, Ui) and (�i, Ui). Consider the double cover ⇡ : S0
�! S \⌃ endowed with

charts (��i, U 0
i)i2I [ (�i, U 00

i )i2I , such that ⇡(U 0
i) = ⇡(U 00

i ) = Ui. On these new charts, the transition

maps are translations in the plane i.e. of the form z 7! z + c, for some c 2 C. Around a singular point

of ⌃ , we have two possibilities:

• The flat cone Dr of angle k⇡ is lifted to a cone of angle 2k⇡, in this case, k is odd.

• The lift of Dr consists of two cones each of them is a copy of Dr, in this case, k is even.

Therefore the cover on S \ ⌃ is in fact a double ramified cover over S and the lift is a translation

surface.
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2.2.2 Analytic definition

A half-translation surface S is the data of a Riemann surface S and a quadratic di↵erential q on S.

Denote by ⌃ the zeros of q. On a small neighborhood of any point, we can write qz = zkdz2, if q

does not vanish at z then we can consider a neighborhood Ui where we can simply write qz = dz2

around a neighborhood of z, notice that the transition maps between these charts must be of the

form z 7! ±z + c. We can endow S \ ⌃ with the flat metric | dz2 |. At a point in ⌃, the quadratic

di↵erential vanishes, hence around this singular point we can write q = zn.dz2. Consider the pull-back

of q via �2 : z 7!
1
2z

2 to get a new quadratic di↵erential q0 = z2n+2.dz2. The pull-back of dz2 via

�n : z 7!
1

n+2 .z
n+2 gives also q0. This means that around this singular point, we have a flat cone of

angle (n+ 1)⇡. Conversely, If (�i, Ui)i2I is an atlas for half-translation surface, then we can consider

the quadratic di↵erential q = dz2 on S. The lift defined above is exactly an attempt to define the

square root of q which yields a 1-holomorphic form.

2.2.3 Constructive definition

Let P = [i2IPi be a finite collection of polygons in the complex plane C. Consider E to be the

collection of all edges in P. A partition of the set E two by two, such that the two curves forming each

pair have the same lengths, gives a half-translation surface by identifying the edges via half-translation in

such a way that the interiors of polygons do not overlap once we apply the half-translation, Considering

the quadratic di↵erential dz2 on each polygon yields a half-translation surface in the analytic sense.

2.2.4 Strata of the Teichmüller space of translation surfaces

For each translation surface, we can list the conical singularities with their angles. Denote by (p1, p2, . . . , pn)

the list of singularities of S and by (2⇡k1, . . . , 2⇡kn) their angles in the same order. For instance, the

genus of the surface can be computed using Poincaré-Hopf formula; let X be the horizontal vector field

defined on the translation surface S, then the sum of the indexes of X at the singular points gives the

relation:
i=nX

i=1

ki � 1 = ��(S) (2.1)

The Teichmüller space of translation surfaces which is the space of all translation surfaces on a

fixed surface S up to isotopies of S, denoted here by T H(S) is stratified.

Let us denote H(k1�1, k2�1, . . . , kn�1) the space of all translation surfaces up to isotopies on S
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such that S 2 H(k1�1, k2�1, . . . , kn�1), if S has n conical singularities of angles (2⇡k1, . . . , 2⇡kn),

then we have a stratification of T H(S) via H(k1 � 1, k2 � 1, . . . , kn � 1), where (k1, k2, . . . , kn) span

the possible combinations such that the topological condition above holds, in other words:

T H(S) =
[

Pi=n
i=1 (ki�1)=��(S)

H(k1 � 1, k2 � 1, . . . , kn � 1)

The deformation space of quadratic di↵erentials is stratified similarly; if S is a half-translation surface

with singular points of angles (⇡k1, . . . ,⇡kn), then the list of the singularities yields a stratification of

the deformation space.

Remark 2.2.2. In what follows, we normalize the volume of (half-)translation surfaces, so we are

considering only those that have volume 1.

2.2.5 The period map

Each stratum H(�) on the Teichmüller space of translation surfaces has a natural a�ne structure,

in fact, the evaluation of the 1-holomorphic form over the relative homology H1(S,⌃,Z) determines

locally the translation structure.

Theorem 2.2.1. The period map ⇥ defined below is a local homeomorphism.

⇥ : H(�) �! H1(S,⌃,Z)

w 7�! (� 7!

Z

�
w)

Example 2.2.1. Let v1, v2, v3 and v4 be vectors in the plane. Consider the polygon P with eight edges

{v1, v2, v3, v4, v1, v2, v3, v4}, identified via translations we get a translation surface in the stratum H(2).

2.2.6 Left and Right actions

The deformation space T H(S) has a natural projection to The Teichmüller space T (S) or equivalently

the deformation space of the complex structures by simply considering the underlying complex structure.

The mapping class group Mod(S) acts on both spaces by pre-composition and the quotient spaces are

the moduli spaces of the prescribed structures. The group SL(2,R) acts on T H(S) by post-composition;

if A 2 SL(2,R) and S is a (half-)translation structure then A.S is the surface obtained by composing
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Figure 2.3: Translation surface

the charts of S by A, this produces a new surface with (half-)translations as transition maps. Since

Mod(S) and SL(2,R) act by left and right composition, respectively, then their actions commute.

The action of the subgroup SO(2) preserves the underlying complex structure, therefore the orbits

of SL(2,R) on H(S) project to the Teichmüller space as copies of an embedded hyperbolic plane H
2

called the Teichmüller disks. Let S be a translation surface, the subgroup of the mapping class group

that preserves the Teichmüller disk of S is called the Veech group of S. Equivalently, we can define it

as the group of linear parts of the a�ne transformations on the translation surface S. The Figure 2.4

below illustrate the action of the matrix:

A =

0

B@
1 2

0 1

1

CA

and the pre-composition by � 2 Mod(S) on the surface S 2 H(2).

2.2.7 Square-tiled surfaces, decomposition into cylinders

Definition 2.2.1. An origami of a square-tiled surface of genus g and degree d is a ramified cover

O : S 7! T
2, where S is a surface of genus g and O is of degree d with only one singular point p at

the basis T2. We say that two origamis O1 : S1 7! T
2 and O2 : S2 7! T

2 are equivalents if there exists

a homeomorphism f : S1 7! S2 s.t O1 � f = O2 i.e. they are in the same class of equivalence in the

moduli space of translation surfaces

An origami of degree d can be seen as a representation of F2 into the permutation group Sd of a
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Figure 2.4: Element in the Veech group

set of d elements. Consider E = T
2
\ p, S0 = S \O�1(p) and let S̃ be the universal cover of E. Then

⇡1(S0) is a subgroup of the Deck transformation of S̃ 7! E which is isomorphic to a free group with

two generators h↵r,↵ui = F2, where ↵r(resp. ↵u) corresponds to the operation of going right (resp.

going up). We have that S0 = S̃/⇡1(S0) which is made of d squares glued together along their edges.

Now F2 acts on these squares in the following way, each square is identified to a class of F2/⇡1(S0)

and F2 acts on these classes by left multiplication. This implies that the origami is encoded in the

representation c : F2 7! Sd; �r = c(↵r), �u = c(↵u). Due to the connectedness of S0, it turns out

that F2 acts transitively on the set {1, . . . , d}.

Conversely, If we have a representation c : F2 7! Sd having a transitive action on {1, . . . , d}, then

we simply consider the surface S̃/�, � ⇢ F2 where � is the stabilizer, say of 1 2 {1, . . . , d}. To

summarize :

Proposition 1. Classes of origamis, up to isomorphism, of degree d are in bijection with representations

of F2 into Sd having a transitive action on {1, . . . , d}, up to conjugacy in Sd.

Let � and � be the vertical and horizontal loops in the torus T
2. Denote by {�1, . . . , �n} and

{�1, . . . ,�m} all the possible lifts of � and � via O. This defines a pair of filling multi-curves with the

same sign intersection at each possible intersection on the surface S. The converse is also true if we

have a pair of multi-curves on S that have unchanged sign between the loops then we can construct

an origami having the initial loops as horizontal and vertical loops for O. The fact that we have a

decomposition into a cylinder allows us to see that some powers of the matrices below belong to the
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Veech group of S.

0

B@
1 1

0 1

1

CA ,

0

B@
1 0

1 1

1

CA

The converse is also true; if a translation surface has a parabolic element A in its Veech group

then the surface is decomposable into flat cylinders in the direction of the fixed vector of A. But for

square-tiled surfaces, the following holds:

Theorem 2.2.2. The Veech group of an origami is a finite index subgroup of SL(2,Z).

Proof. The fact that the image of the holonomy map of a square-tiled surface lies in Z
2 implies that

its Veech group is contained in SL(2,Z). Now if A is in the Veech group of S then we consider the lift

Ã acting on the universal cover S̃ after assuming that p = 0 2 T
2, up to Inner automorphisms of F2

we can write:

A 2 Out+⇡1(S0)(F2)

Where Out⇡1(S0)(F2) is the group of automorphisms preserving ⇡1(S0), which is exactly the Veech group

of O. The fact that ⇡1(S0) is a finite index subgroup of F2 implies that Out+⇡1(S0)(F2) is of finite index

in Out+(F2) = SL(2,Z).

2.2.8 Constructing pseudo-Anosov homeomorphisms

As we mentioned before, decomposing the square-tiled surface into cylinders allows us to realize a

product of some powers of the Dehn twists along the loops generating the cylinders as a parabolic

element in the Veech group of the square-tiled surface. Pseudo-Anosov elements can be constructed

out of square-tiled surfaces by considering hyperbolic matrices in the Veech group of such surfaces. For

instance, we can take products of two parabolic matrices arising from two di↵erent directions. But to

realize two products of Dehn-twist along two multi-curves without any powers, we need a more subtle

result:

Theorem 2.2.3 (Thurston’s construction). Let � = {�1, . . . , �n} and � = {�1, . . . ,�m} be two

filling multi-curves in a surface. Then there exists µ 2 R and a half-translation surface on S such that:
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⌧�1 � · · · � ⌧�n and ⌧�1 � · · · � ⌧�m are respectively realized by the a�ne transformations:

0

B@
1 µ

0 1

1

CA ,

0

B@
1 0

µ 1

1

CA

Proof. For each intersection pki,j between �i and �j consider a rectangle Rn
i,j of height hj and width

li (the dimensions depend only on the curves �i and �j), as shown in Figure 5.3 below

Figure 2.5: The rectangle Rn
i,j

Let us now consider the matrix M = (mi,j)
1jm
1in 2 Mn,m(R) such that:

mi,j = i(�i [ �j)

The matrix

0

B@
1 0

µ 1

1

CA realize the Dehn twist �i if and only if

j=mX

j=1

mi,j .hj = µ.li

Similarly, the matrix

0

B@
1 µ

0 1

1

CA realize the Dehn twist �j if and only if

i=nX

i=1

mi,j .li = µ.hj

The matrix M|M is positive, more precisely, if we denote by (ci,j)
1jm
1im its coe�cients, then ci,j

is strictly positive if and only if �i and �j are connected by some �k. By induction, we deduce that the

entry (i, j) of (M|M)l is strictly positive if and only if there exists a sequence made of l + 1 curves
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{�r1 , . . . ,�rl+1} such that �r1 = �i, �rl+1 = �j and �rk is connected to �rk+1 via some curve in

�. The connectedness of the multi-curve � [ � implies that some power of M|M is strictly positive.

Frobenius-Perron theorem applies here, therefore M|M admits a positive eigenvalue t with a positive

corresponding eigenvector v. Taking (h1, . . . , hm)| = v, (l1, . . . , ln)| = M.v and µ =
p
t yields the

task.

2.3 Character varieties

One way of defining the character varieties of a closed surface S is through the notion of flat connections

on SU(2)-bundles over the surface; Let P : X ! Sg be an SU(2)-bundle, locally i.e. on a small open

set Ui ⇢ S, one can write p : Vi = Ui ⇥ SU(2) ! Ui where p is simply the projection into the

surface component, in such a way that the transition map between Vi and Vj is given by a map

(x, g) 2 Vi 7! (�i,j(x), gx.g), where �i,j is the transition homeomorphism on the surface and g. is a

smooth map from Ui to SU(2). It has a meaning to define the map P�1
{p}⇥P�1

{p} ! SU(2) which

associate to (x, y) the element y�1x that translates y to x. Demanding that the connection preserves

this quantity for any x and y in any fiber implies that the connection which is a horizontal distribution

H on X is right invariant. Notice that right multiplication by SU(2) is well defined on X. Since H is

right invariant, we can describe it using a 1-form ↵ 2 ⌦1(S, su(2)) that takes values in the Lie algebra

su(2), for this purpose consider a section s of P , the 1-form ↵ satisfies then ↵(TxS) = H(x, g)(s(x))

in some local coordinate where s = 1. Let X and Y be two vector fields on S such that [X,Y ] = 0,

these two vector fields can be lifted to X̃ 2 H and Ỹ 2 H which can be written locally as follows:

X̃(x, g) = X + ↵(X).g and Ỹ (x, g) = Y + ↵(Y ).g. The curvature form which is the commutator

between X̃ and Ỹ can be computed as follow:

[X̃, Ỹ ](x, g) = [X + ↵(X).g, Y + ↵(Y ).g]

Developing the right-hand side we get

[X,Y ] + [↵(X),↵(Y )].g + LX(↵(Y ).g)� LY (↵(X).g)
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The fact that the flows of X and Y commute implies that [X̃, Ỹ ] at (x, 1) is equal to:

[↵(X),↵(Y )] + (LX↵)Y � (LY ↵)X = [↵(X),↵(Y )] + d↵(X,Y )

Hence, the connection is flat if and only if, the curvature form

K = d↵+
1

2
[↵ ^ ↵]

vanishes. Notice that the 1-form ↵ is defined up to the choice of a section s1 of P . Let s2 be another

section. Assume on a local coordinate that s1 = 1 and denote s2 = s. Let � be a curve in S such that

�(0) = x0, let �̃1 and �̃1 be lifts of � such that �̃1(0) = 1, �̃2(0) = s(x0), therefore �̃2(t) = �̃1(t).s(x0).

We change the coordinates by left multiplying by s�1 so that the section s becomes the constant section

1. At these new coordinates we have �̃2(t) = s(�(t))�1.�̃1(t).s(x0). This implies that the new form

is equal to Ads�1↵ + ds�1.s which gives an action of the maps from S of SU(2) over the space of

1-forms ⌦1(S, su(2)) called the Gauge group action.

The holonomy of a 1-form ↵ together with a section gives a representation ⇢ : ⇡1(S) ! SU(2) 2

Hom(⇡1(S), SU(2)) by integrating ↵ over the loops of S (taking lifts then evaluating).

If two 1-forms are equivalent by s then the corresponding representations are the same. Changing

the base point yields again two conjugated representations. Conversely, if we start with a representation

⇢ 2 Hom(⇡1(S), SU(2)) then the fundamental group ⇡1(S) acts on the product S̃ ⇥ SU(2) as follows

�.(x, g) = (�.x, ⇢(�).g) where ⇡1(S) acts on the universal cover S̃ by Deck transformations on the group

SU(2) by left multiplication. Two representations conjugated by some in SU(2) produce equivalent flat

bundles. Finally, we deduce that the space of flat SU(2)-bundles is identified to ⌦1(S, su(2)) up to the

Gauge group action, and also identified to the character variety:

X(⇡1(S), SU(2)) := Hom(⇡1(S), SU(2))/SU(2)

2.3.1 The representation variety as an algebraic variety

The space of all representations from the fundamental group ⇡1(S) to SU(2) form an irreducible

algebraic variety on SU(2)2g, where g is the genus of the surface S. Notice that

⇡1(Sg) = {↵1, . . . ,↵g,�1, . . .�g|
gY

i=1

[↵i,�i] = 1}
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Or,

⇡1(Ng) = {↵1, . . . ,↵g|

gY

i=1

↵2
i = 1}

In the case of non-orientable surfaces. Hence Hom(⇡1(Sg), SU(2)) is the algebraic variety in SU(2)2g

defined by the polynomial function
gY

i=1

[Ai, Bi] = 1

Where A1, . . . , Ag, B1, . . . , Bg are the images of a1, . . . , ag, b1, . . . , bg respectively. Or by the following

polynomial, in the non-orientable settings:

gY

i=1

A2
i = 1

Where A1, . . . , Ag are the images of ↵1, . . . ,↵g. The evaluation maps defined by f�(⇢) := tr(⇢((�)),

for � 2 ⇡1(S), generate the ring of conjugacy invariant polynomials over the representation variety (See

Procesi [Pr]). The group SU(2) acts on Hom(⇡1(S), SU(2)) and the character variety X(⇡1(S), SU(2))

is defined to be the algebraic quotient by SU(2), in other words, ⇢1, ⇢2 2 Hom(⇡1(S), SU(2)) are in

the same class if f�(⇢1) = f�(⇢2), for every � 2 ⇡1(S).

2.3.2 Maps between character varieties and relative character varieties

When the surface ⌃ is compact, then ⌃ is homeomorphic to Sg,n where g is the genus of the surface

and n is the number of boundary components. The character variety X(⇡1(Sg,n), SU(2)) is foliated by

the levels of the function (fb1 , . . . , fbn), where b1, . . . , bn are the boundary components of the surface.

Let B be a level of function (fb1 , . . . , fbn), the relative character XB(⇡1(Sg,n), SU(2)) is defined to be

the space all representations in B up to conjugation by SU(2).

Let S1 be a closed surface and p1, . . . , pn be distinct points in S1. Assume that there exists a ramified

cover P : S2 ! S1 over the points p1, . . . , pn of multiplicities (d1, d2, . . . , dm) corresponding to the

reciprocal singular points (q1, . . . , qm) = (P�1(p1), . . . , P�1(pn)), using Riemann-Hurwitz formula,

the cover surface has Euler characteristic �(S2) = d.�(S1) �
Pi=m

i=1 (di � 1), where d is the cover’s

degree. Consider now the punctured surfaces ⌃1 = S1 \ {p1, . . . , pn} and ⌃2 = S2 \ {q1, . . . , qm}. The

restriction of P on ⌃2 is a cover of degree d that induces a map P⇤ : ⇡1(⌃2) 7! ⇡1(⌃1) defining a map

between the character varieties:
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P ⇤ : X(⇡1(⌃1), SU(2)) �! X(⇡1(⌃2), SU(2))

[⇢] 7! [⇢ � P ⇤]

The fact that P⇤(⇡1(⌃2)) is of finite-index in ⇡1(⌃1) implies that P ⇤ is an embedding ofX(⇡1(⌃1), SU(2))

into X(⇡1(⌃2), SU(2)). More precisely, it embeds the relative character variety XB(⇡1(⌃1), SU(2)),

where B = (1, . . . ,n) into XB0(⇡1(⌃1), SU(2)), where B0 = (µ1, . . . , µm), such that if P (pi) = qj

then the loop around qj is sent to the loop around pi to the power dj , therefore:

µj = 2Tdj (
i
2
)

Where Tn is the Tchebychev polynomial of degree n.

Remark 2.3.1. In particular, this procedure defines embeddings from the relative character varieties

XB to the character varieties of closed surfaces, provided that all multiplicities over a singular point pi

are all equal and B is of the form

(2 cos(2⇡.r1), . . . , 2 cos(2⇡.rn))

With ri rational of the form k
dj
, for some j such that P (qj) = pi.

Example 2.3.1. Let us consider the case of origamis in the stratum H(2g� 2). The relative character

variety of the punctured torus X2 cos(⇡
g )(⇡1(S1,1), SU(2)), which is di↵eomorphic to a two-dimensional

sphere (See next chapter for more details), embeds via O into X(⇡1(Sg), SU(2)).

2.3.3 Tangent spaces and symplectic structure

Fix a smooth curve d : I ⇢ R ! X(⇡1(S), SU(2)), it is possible to quantify the speed of d at a given

representation ⇢0 2 X(⇡1(S), SU(2)); assume that d(0) = ⇢0. For any � we can evaluate d at �, this

yields a curve in SU(2) that we denote d� defined near 0. After left translation by ⇢0(�)�1 we get the

curve d�⇢(�)�1 that starts at the identity of SU(2). Now we define

c(�) :=
@

@t
d�(t).⇢0(�)

�1
|t=02 su(2)



19

The evaluation at each � induces a map c : ⇡1(S) ! su(2) that takes values in the Lie algebra of

SU(2). The map c satisfies the following

c(�1.�2) =
@

@t
d�1.�2(t).⇢0(�1.�2)

�1
|t=0

Writing d�1.�2 = d�1 .d�2 , we get

c(�1.�2) =
@

@t
d�1(t)d�2(t).⇢0(�2)

�1.⇢0(�1)
�1

|t=0

This computation shows that

c(�1.�2) = Ad⇢0(�1)c(�2) + c�1

The set of 1-cocycles is identified to the tangent space of Hom(⇡1(S), SU(2)) at ⇢0. If the curve d con-

sists of equivalent representations then there exists a curve g 2 SU(2) such that d(t) = g(t).⇢0.g(t)�1

such that g(0) = 1. The associated cocycle c satisfies the following

c(�) =
@

@t
d�(t)⇢0(�)

�1
|t=0=

@

@t
g(t)⇢0(�)g(t)

�1.⇢0(�)
�1

|t=0

Set v to be the speed of g at t = 0, then we get:

c(�) = v � Ad⇢0(�)v

If we denote by Z1(S, su(2)) the space of cocycle and by B1(S, su(2)) the space of trivial cocycle then

the tangent space of the character variety is identified to

Z1(S, su(2))/B1(S, su(2))

Interpreting this identification in terms of the twisted cohomology group allows the definition of a

symplectic form on the character variety; For a surface S consider a triangulation of the surface and

denote the vertices of this triangulation by {v1, . . . , vm}, the edges by {e1, . . . , en} and the faces by

{f1, . . . , fr}. Consider S̃ to be the universal cover of the surface and {ṽk}k2K , {ẽi}i2I and {f̃j}j2J

to be the lifts of the vertices, edges, and faces, respectively. The fundamental group ⇡1(S) acts on the

universal cover by Deck transformations. In particular, it acts on the lifted cells of the triangulation.
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Fix a vertex v0 2 S and a lift ṽ0 2 S̃ and identify the oriented edge ẽi relating ṽ0 to �i(ṽ0)) with

�i 2 ⇡1(S) as shown in Figure 2.6 below. Consider Ci(S,⇡1(S)) to be the ring generated by the

cells of dimension i 2 {0, 1, 2} of the triangulation with coe�cient in ⇡1(S). Let A be the ring

⇡1(S)[su(2)]. For a representation ⇢ 2 Hom(⇡1(S), SU(2)). One has a natural map r : A ! su(2)

such that r(�.v) = Ad⇢(�)v. Let C
i(S,A) be the space of morphisms from Ci to A and the Ci(S,Ad⇢)

be the morphisms of Ci(S,A) composed with r. The composition with @ defines a sequence on the

cohomology :

C0(S,Ad⇢)
d
�! C1(S,Ad⇢)

d
�! C2(S,Ad⇢)

Let c = d(c0) 2 d(C0(S,Ad⇢)), then one has c(�i) = c(ẽi) = c0(@ẽi) = c0(�i(v0) � v0) =

Ad⇢(�i)c0(v0)� c0(v0), thus the image spans the space of trivial cocycles B1(S, su(2)). If c 2 Ker(d),

then as shown in Figure 2.6, one has c(ẽ1) + c(�1(ẽ2))� c(ẽ3) = c(�1) +Ad⇢(�1)c(�2)� c(�1.�2) = 0.

Therefore the kernel is exactly the space Z1(S, su(2)) and the the tangent space at ⇢ is identified to

the cohomology H1(S,Ad⇢).

Figure 2.6: The universal cover S̃

When the surface is orientable we can define a 2-form on the character variety, for this purpose

consider a bilinear form B invariant by the adjoint action on Lie algebra su(2), the following 2-form

defined on the character variety is symplectic (See [G1] for more details).

H1(S,Ad⇢)⇥H1(S,Ad⇢)
[
�! H2(S,Ad⇢ ⌦ Ad⇢)

B
�! H2(S,R) ⇠= R
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Chapter 3

Dynamics on the moduli space of

triangles

3.0.1 Moduli space of Euclidean triangles

On the moduli space of Euclidean triangles ME2 i.e. the space of all triangles in E
2 with enumerations

which we denote by TE2 up to isometries of the plane, let us consider the following dynamical system;

A triangle (A,B,C) is sent to the triangle (A0, B0, C 0), via these simple rules A jumps over B defining

A0, B jumps over C defining B0 and C jumps over A0 defining C 0 (See the Figure 3.1 below), in other

words:

(A0, B0, C 0) = (RB(A), RC(B), RRB(A)(C))

WhereRX is the reflection about the pointX. This procedure defines a map � on the space of Euclidean

triangles, that descends to the moduli space ME2 := TE2/E(2) since the procedure commutes with any

transformation of the isometry group E(2).

The space of Euclidean triangles is identified to C
3 by considering the coordinates of each point of

the triangle. The transformation � is then identified to a linear map in GL(3,C):

0

BBBB@

z1

z2

z3

1

CCCCA
7!

0

BBBB@

2z2 � z1

2z3 � z2

4z2 � 2z1 � z3

1

CCCCA

We notice that this procedure is decomposable by three steps i.e. � is generated by three transfor-
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Figure 3.1: Example of a leapfrog

mations; The jump of A over B via the map:

�1(A,B,C) = (RB(A), B, C)

The jump of B over C via the map:

�2(A,B,C) = (A,RC(B), C)

And the jump of C over A via the map:

�3(A,B,C) = (A,B,RA(C))

For example the transformation � is the product �1 � �2 � �3.

In the Euclidean plane, the group � generated by �1, �2 and �3 acts on the moduli space of triangles

preserving the area of the triangles. In other words, the function (A,B,C) 7! (B � A) ^ (C � A) is

�-invariant. We denote by M the moduli space of Euclidean triangles with volume .

Elements of E(2) acts diagonally on TE2 , if we start with the quotient by translations, then the

intermediary space T 0
E2 which is identified to C

2 is foliated by levels of the area function (z1, z2) :=

z1 ^ z2 = Im(z̄1z2). Where each level T 0
 is preserved by �. Therefore one has:

C
2 ⇠= T 0

E2 =
[

2R
T 0


The spaces T 0
, for  > 0, are all identical via some real homothety. We notice here that the action of

� commutes with homotheties. While the space of degenerate triangles T 0
0 ⇢ T 0

E2 corresponds in C
2
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to the ”real linear space” {(r1.z, r2.z) | (z, r1, r2) 2 C ⇥ R
2
}. Taking the quotient by the S

1 action

together with normalizing the volume we get:

M1 [M�1 = (T 0
E2 \ T 0

0)/C
⇤ ⇠= CP 1

\ RP 1

Hence the moduli space M1 (Or any M,for  > 0) is identified to the hyperbolic plane H2. The actions

of �1, �2 and �3 on T 0
E2 are given respectively by the linear parabolic matrices on C

3 = Ce1+Ce2+Ce3:

0

BBBB@

�1 2 0

0 1 0

0 0 1

1

CCCCA
,

0

BBBB@

1 0 0

0 �1 2

0 0 1

1

CCCCA
,

0

BBBB@

1 0 0

0 1 0

2 0 �1

1

CCCCA

On the intermediary quotient space T 0
E2

⇠= C
3/C.(e1 + e2 + e3) ⇠= C

2. The transformations �1,�2

and �3 acts by the following parabolic matrices for the basis {ẽ1, ẽ2}:

0

B@
�1 2

0 1

1

CA ,

0

B@
1 0

0 �1

1

CA ,

0

B@
�1 0

�2 1

1

CA

The group generated by the three elements is exactly SL(2,Z) acting linearly on C
2 which descends to

an isometric action on H
2. To summarize:

Proposition 2. For  > 0, the moduli space M is identified to the hyperbolic plane, and the action

of � is nothing but the isometric action of PSL(2,Z) on H
2.

The previous procedure is well-defined for any Lie group G or more generally for any symmetric

space X. Since one only needs to define a reflection about any points in G or X.

Can we describe the action of � for any symmetric space X, in particular, can one find an analogous

for the volume  in these settings?

3.0.2 The character variety of the punctured torus

Let us now consider the surface S1,1 which is a punctured torus, recall that its fundamental group is a

free group generated by two elements ↵ and � (See Figure 6.1 below). The mapping class group which

is the group of orientation-preserving homeomorphisms that preserve the boundary loop b of S1,1 up

to isotopies is isomorphic to Out+(F2) = SL(2,Z). The SU(2)-character variety of S1,1 denoted by
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X(F2, SU(2)) is the space of all representations from ⇡1(S1,1) = F2 to SU(2) which is identified to S
3

with the standard Lie group structure on it.

Figure 3.2: The once-punctured S1,1

The modular group SL(2,Z) viewed as the mapping class group has a well-defined action on

X(F2, SU(2)) by pre-composition i.e. if [⇢] 2 X(F2, SU(2)) and [�] 2 SL(2,Z), then [�].[⇢] =

[⇢ � ��1]. Since the class of the boundary loop b is preserved then the evaluation of the map

(⇢) = fb(⇢) := tr(⇢(b)) is invariant by the action. In fact, the character variety is homeomor-

phic to a ball B3 foliated by the levels of  denoted S which are spheres that reduce to a point

when  = �2 and corresponds to the abelian representations when  = 2. If we consider the

evaluation maps f↵, f� and f↵� , where f�(⇢) = tr(⇢(�)). Then  can be expressed by means of

the previous functions:  = f2
↵ + f2

� + f2
↵.� � f↵f�f↵� � 2. Let us use the parallelogram identity

tr(XY ) + tr(XY �1) = tr(X).tr(Y ) which holds for any X,Y 2 SL(2,C). One has:

tr(⇢(↵.�.↵�1��1)) + tr(⇢(↵.�.↵�1�)) = tr(⇢(�)).tr(⇢(�)) = f2
�(⇢)

tr(⇢(↵.�.��1↵)) + tr(⇢(↵.�.↵�1�)) = tr(⇢(↵.�)).tr(⇢(↵�1.�))

tr(⇢(↵.�)) + tr(⇢(↵.��1)) = tr(⇢(↵)) + tr(⇢(�)) = (f↵ + f�)(⇢)

Combining the last three identities, we get:

 = f2
� � f↵.� .(f↵ + f� � f↵.�) + f↵2 = f2

↵ + f2
� + f2

↵.� � f↵f�f↵� � 2

The spheres S can be visualized in R
3 (Figure 3.3) using the following fact (we postpone the proof

to the end of the note)
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Proposition 3 (Vogt-Fricke). (f↵, f� , f↵�) is an embedding of the character variety X(F2, SU(2)) in

[�2, 2]3 and the image is the semi-algebraic set defined by the inequality �2    2.

Figure 3.3: The sphere S1

We can better understand a representation ⇢ by looking at its , for instance, if we consider the set

� ⇢ ⇡1(S1,1) that consists of simple closed loops of the punctured torus, then:

Proposition 4. For a representation [⇢], if (⇢) is close to �2, then the evaluation of elements � 2 �

i.e. � 7! f�(⇢) on the set � is contained in a set of small measure in [�2, 2]. Equivalently, the set

{⇢(�) | � 2 �} ⇢ SU(2) is contained in a small cylinder based on the imaginary elements (traceless

elements).

Proof. Assume that �2 < (⇢) < �2+ ✏ for a small ✏. Let � 2 � then there exists � 2 SL(2,Z) such

that �(�) = ↵. The fact that the sphere S is close to {(0, 0, 0)} = S�2 implies that the image set

f↵(S) is contained in a small neighborhood of zero. Since ⇢ 2 Sk then �.⇢ 2 S, we conclude the

proof by noticing that

f↵([�.⇢]) = tr(�.[⇢](↵)) = tr(⇢(��1(↵))) = tr(⇢(�)) = f�(⇢)

The modular group SL(2,Z) acts on these spheres by polynomial automorphisms. For instance, the
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Dehn-twist ⌧�1 along the simple closed curve �1 induces the following automorphisms on F2: ↵ 7! ↵

and � 7! �.↵. Therefore the action ⌧�1 seen on the local coordinates (x, y, z) = (f↵, f� , f↵.�) induces

the polynomial automorphisms:

(x, y, z) 7! (x, z, xz � y)

The action of hyperbolic elements is by far the most interesting one. In this context, we shall state the

result of Brown [Br]:

Theorem (R. Brown). Let f 2 SL(2,Z) be a hyperbolic element. Then there exists ✏ > 0 such that

8 2]� 2,�2 + ✏[, there exists either an elliptic fixed point or an elliptic period 2 point on S.

An elliptic fixed point p of f is a fixed point by f where the derivative dpf is conjugated to a

rotation. Brown showed that varying  implies a variation of the rotation angle of the elliptic fixed

point. Therefore a theorem by Rüssmann [R] ensures the stability of such fixed points.

This implies the non-ergodicity of hyperbolic elements for the spheres S where  is close to �2.

For a larger group, for instance, if we consider the action of the modular group, Goldman proved that

S inherits a symplectic form and he showed [GX1]:

Theorem (W. Goldman). The group SL(2,Z) acts ergodically on the spheres S with respect to its

symplectic measure.

3.0.3 Moduli space of spherical triangles

Once we discussed the SU(2)-character variety of the punctured torus, we are ready to discuss the

moduli space of spherical triangles MS2 . Since S
2 = SO(3)/SO(2) is a symmetric space then one can

define, as in the Euclidean case, the action of the group � generated by �1,�2 and �3 where the action of

�i on the triangles (A1, A2, A3) fixes the components that are di↵erent from i and reflects the Ai along

the point Ai+1, in a cyclic manner. As an example, we consider the transformation � = �1 � �2 � �3

(See Figure 3.4 below)

It is possible to embed the moduli space MS2 into R
3. If (A,B,C) is a triangle in S

2, then

we consider the spherical lengths ”or the angles” ✓1 = disS2(B,C), ✓2 = disS2(A,C) and ✓3 =

disS2(A,B). A choice of (✓1, ✓2, ✓3) determines the triangle up to isometries of S2. Hence, the map

from of the moduli space MS2 to [0,⇡]3 given by the length functions (✓1, ✓2, ✓3) is an embedding. The
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Figure 3.4: The transformation �

image is exactly the polyhedra H (as illustrated in Figure 3.5) defined by the triangle inequalities in the

sphere i.e.

8
>>>>>>>>>>><

>>>>>>>>>>>:

✓2 + ✓3  ✓1

✓1 + ✓3  ✓2

✓1 + ✓2  ✓3

✓1 + ✓2 + ✓3  2⇡

Note that the last inequality is deduced by reflecting the first point of a triangle about the origin and

then applying the usual triangle inequality on the new triangle.
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Figure 3.5: Polyhedra H in [0,⇡]3

For the spherical case, one has the following identification:

Proposition 5. The map from the SU(2)-character variety of the punctured-torus to the moduli space

of spherical triangles MS2 given by [⇢] 7! [1, ⇢(↵), ⇢(�)] is an identification between the two spaces.

Using this identification we can express the maps �1, �2 and �3 as elements of the modular group

of the punctured torus; The map �1 sends (A,B,C) to (RB(A), B, C), so in terms of representations

we have:

�1([1, ⇢(↵), ⇢(�)]) = [1, ⇢(↵�1), ⇢(�.↵�2)]

The map �2 sends (A,B,C) to (A,RC(B), C), in terms of representations, we have:

�2([1, ⇢(↵), ⇢(�)]) = [1, ⇢(�.↵�1.�), ⇢(�)]

And �3 sends (A,B,C) to (A,B,RA(C)), so:

�3([1, ⇢(↵), ⇢(�)]) = [1, ⇢(↵), ⇢(��1)]

Seen on the group GL(2,Z), the action of �1,�2 and �3 corresponds respectively to the action of:

0

B@
�1 �2

0 1

1

CA ,

0

B@
�1 0

2 1

1

CA ,

0

B@
1 0

0 �1

1

CA
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For instance, � acts via the hyperbolic matrix

0

B@
�3 2

2 �1

1

CA on the character variety.

Proposition 6. The action of the group � on MS2 is nothing but the action of a finite index subgroup

of GL(2,Z) on the SU(2)-character variety of the punctured torus S1,1.

One can notice that the volume Area(A,B,C) = det(
�!
OA,

��!
OB,

��!
OC) of the simplex OABC is

invariant by such a procedure (See Figure 3.6 Below). Therefore the function Area is invariant by the

group �. Using the result of Goldman, we deduce that the function Area is a reparametrization of 

defined in the previous section.

Now we can see that the sphere of the abelian representations S2 corresponds to the set of degenerate

triangles, while the point S�2 corresponds to the right-angled triangle (all the angles are ⇡
2 ) which have

the maximum volume among the simplices OABC for A, B and C points in S
2.

Proof of Proposition 3: The relation between an element A 2 SU(2) and the spherical distance

disS3(Id,A) is given by the trace function; if ✓ is the distance between 1 and A then tr(A) = 2cos(✓).

Using the identification, we deduce that the image of the map (f↵, f� , f↵�) defined in Proposition 3 is

exactly the image of H by the homeomorphism from [0,⇡]3 to [�2, 2]3 given by:

(✓1, ✓2, ✓3) 7! (2cos(✓1), 2cos(✓2), 2cos(✓3))

It is su�cient now to show that the image of the boundary of the Polyhedra H is exactly the sphere

S2, we recall that S2 is defined by the polynomial x2+y2+ z2�xyz�4. Without loss of generality let

us consider the image of the face ✓1 + ✓2 = ✓3 by the homeomorphism. Applying the cosine function

we get:

cos(✓1 + ✓2) = cos(✓3)

Hence:

sin(✓1)sin(✓2) = cos(✓1)cos(✓2)� cos(✓3)

Taking the square now we get:

(1� cos2(✓1))(1� cos2(✓2)) = (cos(✓1)cos(✓2)� cos(✓3))
2
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We replace 2cos(✓1), 2cos(✓2) and 2cos(✓3) by x, y and z, respectively, we get:

(1�
x2

4
)(1�

y2

4
) = (

xy

4
�

z

2
)2

Which is exactly the equation of the sphere S2.

Figure 3.6: Reflection of the simplex OABC
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Chapter 4

Elliptic fixed points

4.1 Two one-parameter subgroups of parabolic matrices

In this section, we address the question of the existence of elliptic matrices in subgroups generated by

two parabolic matrices of the special linear group SL(2,R).

In SL(2,R),conjugacy classes of matrices of SL(2,R) are characterized via their traces i.e two

matrices are conjugate if and only if they share the same trace, let A 2 SL(2,R)

• If |tr(A)| > 2 then A has two distinct real eigenvalues �,��1, in this case A is called hyperbolic.

• If |tr(A)| < 2 then A is conjugate to a rotation in the Euclidean plane with angle arccos( tr(A)
2 ),

A is then called elliptic.

• If |tr(A)| = 2 then A has 1 as eigenvalue and A is called parabolic.

Let C1, C2 : I 7! SL(2,R) be two di↵erent parabolic one-parameter subgroups in SL(2,R), so the

two subgroups fix di↵erent vectors in R
2, and after changing the basis of R2, we can write :

C1(t) =

0

B@
1 at

0 1

1

CA and C2(t) =

0

B@
1 0

bt 1

1

CA, for some real numbers a and b.

LetR be the SL(2,R)-character variety of the free group generated by two words A and B. Consider

the curve Ct defined in R as follow, Ct(A) = C1(t) and Ct(B) = C2(t).

Question 1. For which word W 2 hA,Bi and t 2 R, the matrix Ct(W ) 2 SL(2,R) is elliptic?

Let us first answer this question near the point t = 0, we need to define the following quantity :

Let W be a word in the free group hA,Bi and assume that the word W is written in a minimal way
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using A,B,A�1 and B�1, and denote a+ the number of appearance of A in W , a� the number of

appearance of A�1 in W , b+ the number of appearance of B in W and b� the number of appearance

of B�1 in W . Finally we denote KW := 1
2 (a+b+ + a�b� � a+b� � a�b+) 2 Q.

Proposition 7. If abKW is negative, then there exists a small neighborhood of 0 such that Ct(W ) is

elliptic, for t in the neighborhood.

Proof. It is su�cient to study the behavior of the polynomial function

t 7! tr(Ct(W ))

near 0; so using the Leibniz rule we get :

@

@t
tr(Ct(W )|t=0 = tr(

X

L2W

@

@t
L(t))|t=0 = 0

Where L spans the letters of W . Using the fact that for any letter L in W , the second derivative

at zero vanishes. If L and M are two letters is W then the quantity tr(( @
@tL(t)|t=0).(

@
@tN(t)|t=0)) is

equal to ab,�ab, ab,�ab, whenever {L,M} = {A,B}, {L,M} = {A�1, B}, {L,M} = {A�1, B�1
},

{L,M} = {A,B�1
}, respectively, thus;

@2

@t2
tr(Ct(W )|t=0 = tr(

X

L2W,N2W

(
@

@t
Ct(L)|t=0).(

@

@t
Ct(N)|t=0)) = abKW

Negativity of abKW implies that t 7! tr(Ct(W )) is concave, hence Ct(W ) is elliptic in a neighbor-

hood of 0.

For instance, we can check that

Ct(AB
�1) =

0

B@
1 0

bt 1

1

CA

0

B@
1 �at

0 1

1

CA =

0

B@
1 �at

bt 1� abt2

1

CA

or

Ct(AB) =

0

B@
1 0

bt 1

1

CA

0

B@
1 at

0 1

1

CA =

0

B@
1 at

bt 1 + abt2

1

CA

is elliptic, whenever 0 < |t| < 2p
|ab|

. Hence we deduce that we have an elliptic matrix whenever
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0 < |t| < 2p
ab
.

In fact, except at the parameter |t| = 2p
|ab|

, this condition is necessary for the existence of elliptic

matrices in the image of Ct. To see this we focus on the action of the group hC1(t), C2(t)i on the

hyperbolic plane H
2. Let us assume that |t| > 2p

ab
. The hyperbolic polygon P, as shown in Figure 4.1,

is a Dirichlet region for hC1(t), C2(t)i with an infinite area and the quotient is a pair of pants, therefore

:

Proposition 8. The group hC1(t), C2(t)i is a torsion free Fuchsian group if |t| > 2p
|ab|

.

Figure 4.1: Dirichlet Region P

Now let us consider Another situation that is more or less equivalent to the discussion before. Let P

and R be two polynomial functions defined on an open interval I around 0 such that P and R and P.R

are not constant and P vanishes at 0. For t 2 I, set C1(t) =

0

B@
1 0

P (t) 1

1

CA and C2(t) =

0

B@
1 R(t)

0 1

1

CA.

If PR > 0, for t > 0, up to change of basis, we can assume that:

C1(t) =

0

B@
1 µ(t)

0 1

1

CA

and,

C2(t) =

0

B@
1 0

µ(t) 1

1

CA
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Otherwise i.e PR < 0, we can assume that:

C1(t) =

0

B@
1 �µ(t)

0 1

1

CA

and,

C2(t) =

0

B@
1 0

µ(t) 1

1

CA

Using the previous discussion and seeing µ as the variable instead of t, we deduce that:

Proposition 9. When t > 0, if the sign KW is opposite to the sign of PR, then Ct(W ) is elliptic in a

small neighborhood of 0,

4.2 SU(2)-Character variety of the one punctured torus S1,1

Let S1,1 be the punctured torus, its fundamental group is a free group generated by two elements �1

and �2. The character variety X(F2, SU(2)) is defined to be the space of all representations of F2 into

SU(2) up to conjugacy of SU(2).

As defined before, if � 2 F2, we define the evaluation function f�([⇢]) := tr(⇢(�)) of [⇢] 2

X(F2, SU(2)) at �. Let us consider the functions x = f�1 , y = f�2 , z = f�1.�2 . The mapping

class group of S1,1 acts on the character variety preserving the conjugacy class of the boundary loop b,

therefore the trace of the boundary loop which is denoted by  := fb is invariant under the action of the

mapping class group. Since b = [�1, �2], then  can be expressed by means of the previous functions

x = f�1 , y = f�2 , z = f�1.�2 using the following identity that holds in SL(2,C), if M,N 2 SL(2,C)

then

tr(M.N�1) + tr(M.N) = tr(M).tr(N)

So we get that

 = x2 + y2 + z2 � xyz � 2

The levels of  denoted S are two-dimensional spheres except for the level  = �2 where it reduces

to a point. (Figure 02).

In particular, the level  = 2 is the abelian locus of the character variety X(F2, SU(2)) i.e those

representations for which ⇢(�1) and ⇢(�2) commute and since we are working on SU(2), then ⇢(�1)
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Figure 4.2: Tetrahedral Pillow

and ⇢(�2) lie inside the same one parameter subgroup. Up to conjugacy by some element in SU(2),

one can always assume that the image of the representation lies in a fixed one-parameter subgroup H,

therefore we can identify the abelian locus with Hom(Z2, S1)/hgi, where g is any matrix that belongs

to the normalizer of H. This gives an identification between the abelian locus and T
2/h�Idi which is

homeomorphic to a sphere, as illustrated in Figure 3.

Figure 4.3: Abelian Locus S2

The irreducible locus of X(F2, SU(2)) is exactly �1([�2, 2[).

Proposition 10 (Vogt-Fricke). � = (f�1 , f�2 , f�1.�2) is an embedding of the character varietyX(F2, SU(2))

into [�2, 2]3.

.
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The mapping class group acts on the  levels since it preserves  and it turns out that the action

of Mod(S1,1) is ergodic on S. [GX1].

Theorem 4.2.1 (W. Goldman). Mod(S1,1) acts ergodically on the spheres S with respect to its

symplectic measure.

We say that a di↵eomorphism admits an elliptic fixed point p, if p is fixed by f and the derivative

at p of f is elliptic.

R. Brown Studied the dynamics of a single pseudo-Anosov homeomorphism f (See [Br]) and he

proved the existence of some elliptic fixed points for f near the singular point  = �2. The idea

of Brown relies on the fact that if the pseudo-Anosov f fixes a point in the Abelian locus then the

derivative of f at this point should be hyperbolic and from the other side the point (0, 0, 0) ( = �2) is

fixed by f and the derivative of f lies in SO(3), once we use the trace coordinates. So f should admit

an elliptic fixed point of any angle near  = �2. Together with the study of the set of fixed points of

f , he showed :

Theorem 4.2.2 (R. Brown). Let f 2 Mod(S1,1) be a pseudo-Anosov. Then there exists ✏ > 0 such

that 8 2]� 2,�2 + ✏[, there exists either an elliptic fixed point or an elliptic period 2 point on S.

Mateus noticed that since S is a two-dimensional sphere and f is preserving the area induced by

!, then one can use Rüssmann theorem to deduce non-ergodicity of a pseudo-Anosov homeomorphism

action near  = �2. (See [R] for more details on the subject)

Theorem 4.2.3 (H. Rüssmann). Any Brjuno elliptic periodic point of a real-analytic area-preserving

map is stable.

Here, we point out that Brjuno numbers are of full measure in U(1).

4.3 Powers of Dehn twists

The action of some power of a single Dehn twist on X(⇡1(S1,1), SU(2)) or on X(⇡1(S0,4), SU(2)) fixes

a ”large” set of representations and even if we consider two Dehn twists, the set of fixed points of the

group generated by these powers is still considerable and it would be reasonable to ask whether there

exist some elliptic point among those fixed points, for some pseudo-Anosov homeomorphism in such

groups.
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4.3.1 Once-punctured torus

In the case of the once punctured-torus, let ⌧1 to be the Dehn twist along �1, ⌧2 to be the Dehn twist

along �2 and consider the group �n = h⌧n1 , ⌧
4
2 i with n > 2.

In fact, ⌧1 and ⌧2 have a simple action on the algebraic level; ⌧⇤1 (�1, �2) = (�1, �1.�2) and

⌧⇤2 (�1, �2) = (�2.�1, �2) and we can express their dynamics on the trace coordinates x = f�1 , y = f�2 ,

z = f�1.�2 . Hence one would have that the two Dehn twist acts by polynomial automorphisms in R
3,

once seen in these coordinates, and we have

⌧1(x, y, z) = (x, z, xz � y)

and,

⌧2(x, y, z) = (z, y, yz � x)

We can write ⌧1 in a convenient way noticing that if x is fixed, then ⌧1 becomes linear i.e

⌧1(x, y, z) = (x,Mx

0

B@
y

z

1

CA)

where Mx =

0

B@
0 1

�1 x

1

CA. Now ⌧n1 can be expressed as follows

⌧n1 (x, y, z) = (x,Mn
x

0

B@
y

z

1

CA)

We notice here that Mx is elliptic, and if x0 = f�1(⇢) = 2 cos ( 2⇡pn ) for some p 2 Z, then [⇢] is fixed

by ⌧n1 . As a consequence

Proposition 11. Let Lp be the segment line defined to be the intersection between the line x =

2 cos ( 2⇡pn ), y = 0 with the character variety X(F2, SU(2)). Then Lp consists of fixed points of �n.

Along the points of Lp, we have that

@
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=
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we also have

@

@y
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x
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1
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=
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and,

@

@z

0

BBBB@
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Mn
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1

CCCCA
=
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BBBB@

0
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1
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Define the polynomial vector

0

B@
P (y, z)

Q(y, z)

1

CA := ( @
@xM

n
x )

2

64
y

z

3

75, and deduce that the derivative of ⌧n1 at any

point in the segment Lp is of the form

0

BBBB@

1 0 0

P 1 0

Q 0 1

1

CCCCA

Similarly, if we set

0

B@
R(x, z)

T (x, z)

1

CA := ( @
@yM

4
y )

2

64
x

z

3

75, we get that the derivative of ⌧42 at a point in the

segment Lp is of the form 0

BBBB@

1 R 0

0 1 0

0 T 1

1

CCCCA

If placed on the segment Lp, in particular, we have that y = 0. We notice here that the polynomial

P (0, z) = (
@

@x
Mn

x )

2

64
0

z

3

75

vanishes at z = 0. Therefore the setting of the first section applies here, by considering the first 2⇥ 2

blocks of d⌧1 and d⌧2 i.e

0

B@
1 0

P 1

1

CA and

0

B@
1 R

0 1

1

CA, respectively.

Now let f be a pseudo-Anosov element in the group �n, we express f as a minimal word using

the letters ⌧n1 and ⌧42 and define Kf as in section 2. Along the segment Lp in a small neighborhood
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of z = 0, when z > 0, assume that P.R.Kf is of negative sign, and denote by ✏n 2 {�1, 1} the sign

of PR for z > 0 close to 0. Since P (0, z) converges to 0 when z converges to 0, hence applying

Proposition 1 and Remark 3.1, we deduce that df along the segment Lp in a small neighborhood of

z = 0, when z > 0, is an elliptic matrix with a non-constant angle depending on z. Applying Rüssmann

theorem on those levels  near 4 cos2( 2⇡pn )� 2, we deduce that f does not act ergodically on S. To

summarize:

Theorem 4.3.1. Let f be a pseudo-Anosov element in �n, such that Kf is of opposite sign to ✏n (the

sign of PR in a small neighborhood of Lp near z = 0, for z > 0). Then f does not act ergodically on

the corresponding levels S which are close to the level  = 4 cos2( 2⇡pn )� 2, moreover if we vary n, p

such ’s cover a dense subset of positive measure in [�2, 2].

4.3.2 Four-punctured sphere

A similar result to the previous one holds in the case of the four-punctured sphere. The four-punctured

sphere S0,4 is a topological sphere with 4 open disks removed, its fundamental group is generated by

the boundary loops ↵,�, �, � of S and it is isomorphic to the free group F
3 and it can be expressed as

follows:

⇡1(S0,4) = {↵,�, �, �|↵��� = 1}

The mapping class group of S0,4, Mod(S0,4) is generated by the Dehn twists along the simple closed

loops in S0,4 which are the loops ↵�, �� and ↵�.

Using the trace coordinates, the SU(2)-character varieties of the four punctured sphereX(⇡1(S0,4), SU(2))

can be embedded in R
7 as an algebraic variety. If we denote a = f↵ , b = f� , c = f� , d = f�, x = f↵� ,

y = f�� and z = f↵� , then X(⇡1(S0,4), SU(2)) is the zero locus in [�2, 2]7 of:

x2 + y2 + z2 + xyz = px+ qy + rz + s

Where, p = ab + cd, q = bc + ad, r = ac + bd and s = 4 � a2 � b2 � c2 � d2 � abcd. Since

the mapping class group preserves the boundary loops of S0,4 then the parameter ⌧ = (a, b, c, d) is an

invariant function, hence the mapping class group acts on the levels of ⌧ which is an algebraic surface,

in this case, denoted S(a,b,c,d).

If we consider the Dehn twist along ↵� then its action on the relative character variety S(a,b,c,d)
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using the coordinates a = f↵, b = f� , c = f� , d = f�, x = f↵� , y = f�� and z = f↵� , is as follow:

0

BBBB@

x

y

z

1

CCCCA
7!

0

BBBB@

x

(x2
� 1)y + xz + q � xr

xy � z + r

1

CCCCA

If x is fixed, then it becomes an a�ne map i.e:

0

BBBB@

x

y

z

1

CCCCA
7!

0

BBBB@

x

Ax

0
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z

1

CA

1

CCCCA

Where Ax.V =

0

B@
(x2

� 1) x

x �1

1

CA .V +

0

B@
q � xr

r

1

CA. We notice that the linear part of Ax is elliptic.

Dehn twists action

In general, the action of a Dehn twist along a separating curve c can be expressed in a simple way by

writing:

⇡1(S) = {⇡1(⌃1),⇡1(⌃1) | c1 = c2}

here ⌃1 and ⌃2 are the resulting surfaces after cutting along c, where c1 and c2 are their boundary

components respectively. Hence the Dehn twist along ↵ acts on the character variety as follows:

⌧⇤c (⇢)(�) =

8
>><

>>:

⇢(�) if � 2 ⇡1(⌃1)

⇢(c2).⇢(�).⇢(c2)�1 if � 2 ⇡1(⌃2)

This ensures that if fc(⇢) = 2 cos( 2⇡pn ) then ⇢ is a fixed point of ⌧nc .

Consider the group �n = h⌧n↵� , ⌧
4
��i, denote by Lp a line contained in the intersection of a relative

character variety where c = d = 0 with the subspace x = 2cos( 2⇡pn ), y = 0. The last paragraph ensures

that :

Proposition 12. Lp consists of fixed points of �n.

Before jumping to the computations of the derivative of ⌧n↵� and ⌧4�� , we notice that over the locus

where c = d = 0, both r and q vanishes, therefore the a�ne map Ax becomes a linear elliptic map.
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Similarly to the case of the punctured torus, along the line segment Lp and using the fact that

An
x = Id we get that:

d⌧n↵� =

0

BBBB@

1 0 0

P 1 0

Q 0 1

1

CCCCA

Where P and Q are polynomial functions such that

0

B@
P (0, z)

Q(0, z)

1

CA = (
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x)
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CA

On the other hand, we have that

d⌧4�� =

0

BBBB@

1 R 0

0 1 0

0 S 1

1

CCCCA

Where R and S are polynomial functions such that

0

B@
R(x, z)

S(x, z)

1

CA = (
@

@y
A4

y)

0

B@
x

z

1

CA

We notice here that P (0, 0) = 0 since Ax is linear, and we deduce in a similar way to the discussion

of the punctured torus case, the following:

Theorem 4.3.2. Let f be a pseudo-Anosov element in �n, such that Kf is of opposite sign to PR

(the sign here depends only on n) in a small neighborhood of Lp near z = 0, for z > 0, then f does not

act ergodically on the corresponding levels S(a, b, 0, 0) for a subset of parameters of positive measure

on Lp.
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4.4 Constructing elliptic fixed points for the twice-punctured

torus

Let ↵, � be two curves in a surface S such that the geometric intersection between them is 1, we

denote the levels of f↵ defined on X(⇡1(S), SU(2)) by L↵. The following fact will be useful for what

is next:

Proposition 13. If f↵�([⇢]) = 0,f↵ = 0 and f� = 2cos( 2⇡pn ), then ⇢ is a fixed point for ⌧n� and

D[⇢]⌧
n
� (T[⇢]L↵) = T[⇢]L↵, for all n > 2.

Proof. The fact that ⇢ is a fixed point follows from the HNN extension by writing: ⇡1(S) = {⇡1(S \

�)
S

d | d�+d�1 = ��
} here �+ and �� are the resulting boundary loops after cutting along �. So

we can write

⌧⇤� (⇢)(�) =

8
>><

>>:

⇢(�) if � 2 ⇡1(S \ �)

⇢(�).⇢(↵+) if � = d

Now it is obvious that ⇢ is fixed whenever f� = 2cos( 2⇡pn ).

It is possible to add a system of coordinates (f�1 , . . . , f�N ), for some N 2 N, to f↵, f� and f↵� such

that the �i’s do not intersect � which implies that (f�1 , . . . , f�N ) is invariant by ⌧� , now it is su�cient

to reduce the proof to the case of the one-punctured torus and using the computation of the derivative

in the last section we see that the condition f↵�([⇢]) = 0 ensures that D[⇢]⌧
n
� (T[⇢]L↵) = T[⇢]L↵.

Let us consider the following configuration, as shown in Figure 4, in a twice-punctured torus S1,2.

We define the two subgroups of the mapping class group on S1,2:

�n = h⌧4� , ⌧
n
� i

and,

� = h⌧4↵, ⌧
4
�i

Where ↵, �, � and � are curves in S1,2, as shown in Figure 4. We notice here that the four curves fill

the surfaces S1,1. So one can generate pseudo-Anosov homeomorphisms from the group h�n,�i. One

way to do so would be to use Fathi’s theorem:
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Figure 4.4: System of curves of S1,2

Theorem 4.4.1. Let us consider a family of distinct curves {�1, ..., �n} filling S. Then 9N 2 N such

that 8(n1, ..., nk) 2 Z
k
, if |ni| > N , 8i. Then ⌧n1

�1
� · · · � ⌧nk

�k
is a pseudo-Anosov homeomorphism.

Fix � 2 h�n,�i a pseudo-Anosov homeomorphism of the form � = f1 � f2 for some f1 2 �n that

satisfies the conditions of theorem 5.2 once seen on a small neighborhood of � with � and f2 2 � that

satisfies the conditions of theorem 5.1 once seen on a small neighborhood of ↵ and �.

4.4.1 The character variety

The fundamental group of the twice-punctured torus S1,2 is isomorphic to a free group with three

generators, it can be expressed as follows:

⇡1(S1,2) = {↵,�, c1, c2 | [↵,�] = c1.c2}

Since the fundamental group is a free group of three generators, the character variety of the twice

punctured torus X(⇡1(S1,1), SU(2)) is the same as the character variety of the four-punctured sphere.

Let us denote x = f↵, y = f� , z1 = f↵.� , 1 = fc1 , 2 = fc2 , z2 = f↵.c2 , z3 = f�.c2 and

w = f�.↵.c2 . Then X(⇡1(S1,1), SU(2)) is embedded in R
8, in addition, it is defined by the zero locus

of:
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y.z3 � x.z3.z1 + w.z1 + x2.2 � x.z2 � 2 = 1

and,

z21 + z22 + z23 + z1z2z3 = p.z1 + q.z2 + r.z3 + s

where, p = xy + 2.w, q = x.2 + y.w, r = y.2 + xw and s = 4� y2 � x2
� 22 � w2

� xy.2w.

Now the relative character varieties X(1,2)(⇡1(S1,2), SU(2)) are exactly the levels of (1,2) i.e.

the algebraic variety in R
6 of dimension 4 defined by the previous polynomials.

Theorem 4.4.2. For a homeomorphism f2 2 � satisfying the conditions of Theorem 4.3.1, there exists

N 2 N such that for any n > N , for any f1 2 �n satisfying the conditions of Theorem 4.3.2, the

homeomorphism � = f1 � f2 is pseudo-Anosov. Moreover, � admits a line of elliptic fixed points of

irrational frequency vector over the corresponding relative character varieties XB(⇡1(S1,2), SU(2)).

Remark 4.4.1. Here, we mean by an elliptic fixed point of a symplectomorphism on a 2n-dimensional

symplectic manifold, a fixed point p for f , where the derivative at p has a spectrum of the form

{e2⇡i!j : 1  j  n} for some frequency vector ! = (!1, . . . ,!n).

Consider the representation [⇢0] 2 X(⇡1(S1,2), SU(2)) such that ⇢0(↵) = i, ⇢0(�) = j and ⇢0(c1) =

⇢0(c2) = i. At ⇢0 we have f↵ = f� = f� = f�.� = f↵�↵�1c2 = f↵.� = 0 and f� = �2. We notice that

[⇢0] is an irreducible representation.

Lemma 1. There exist a small neighborhood of [⇢0] for which :

(f↵, f� , f�, f�.↵, f↵�↵�1c2 , f↵.�)

is a homeomorphism into a small neighborhood of (0, 0, 0, 0, 0, 0).

Proof. The map

f : X(⇡1(S1,2), SU(2)) �! [�2, 2]6

[⇢] 7! (f↵(⇢), f�(⇢), f�(⇢), f�.↵(⇢), f↵�↵�1c2(⇢), f↵.�(⇢))

is continuous, it would be su�cient to show that f admits an inverse in a neighborhood of [⇢0].

Let us consider (x, y, d1, d2, d3, z) 2 [�2, 2]6 near (0, 0, 0, 0, 0, 0), for the case of F2 we know, using
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Proposition 2 (Vogt-Fricke), that the coordinates (x, y, z) give local coordinates for X(F2, SU(2)). i.e

for (x, y, z) near (0, 0, 0) there exists exactly one representation [⇢0] 2 X(F2, SU(2)) for which f↵ = x,

f� = y, f↵.� = z. We want to prove that for [⇢0] 2 X(F2, SU(2)) there exists unique extension

[⇢] 2 X(⇡1(S1,2), SU(2)) near [⇢0], knowing that (f�(⇢), f�.↵(⇢), f↵�↵�1c2(⇢)) = (d1, d2, d3). To do

so, we write the curves (�, �.↵,↵.�.↵�1.c2) using the generators h↵,�, c2i = ⇡1(S1,2) i.e

(�, �.↵,↵.�.↵�1.c2) = (c2.�, c2.�.↵,↵.�.↵
�1.c2)

Hence (d1, d2, d3) determines the spherical distances in SU(2):

(d(⇢(c�1
2 ), ⇢(�)), d(⇢(c�1

2 ), ⇢(�.↵)), d(⇢(c�1
2 ), ⇢(↵.�.↵�1)))

Generically the intersection of three spheres is two points. For (0, 0, 0, 0, 0, 0) we have exactly two

representations [⇢0] and [⇢00] such that ⇢00(↵) = i, ⇢00(�) = j, ⇢00(c2) = �i. Finally, we deduce that f

is a bijection from a small neighborhood of [⇢0] into a small neighborhood of (0, 0, 0, 0, 0, 0).

Now we are ready to prove the second part of Theorem 6.2:

Proof. Using the coordinate system (f↵, f� , f�, f�.↵, f↵�↵�1c2 , f↵.�) around the point [⇢0]. We consider

for su�ciently big n the line :

L = {(0, 0, 0, 0, t, 2 cos(
(n� 1)⇡

2n
)) | 0 < t < ✏}

Along L we have that f� = f2
↵.� � 2 hence f� = 2 cos( (n�1)⇡

n ).

We shall prove that L consists of elliptic fixed points. We first notice that since f↵ = f� = 0, �

fixes any point in L. Therefore, � acts trivially on the level (f↵, f�) = (0, 0). Since f�.� = 0 on L and

applying Proposition 2, we have that ⌧4↵ preserves the infinitesimal levels of f�. With the fact ↵ and

� do not intersect � and � do not intersect �, we deduce that � preserves the infinitesimal levels of

(f�, f�). To summarize � at any point in L:

• acts trivially on any level of (f↵, f�).

• preserves any level of (f� , f�).

Now we fix n 2 N such that f↵.� = 2 cos( (n�1)⇡
2n ) is small enough to ensure that Df2 is elliptic.
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In a similarly way, �n fixes any point in L and we have that �n along L:

• preserves any level of (f↵, f�).

• acts trivially on any level of (f� , f�).

Now we choose ✏ close enough to zero that Df2 is elliptic. This implies that along L, on the local

coordinates (f↵, f� , f� , f�, fc1 , fc2) we have:

Df2 =

0

BBBB@

I2 0 0

0 A 0

0 # I2

1

CCCCA

and,

Df1 =

0

BBBB@

B 0 0

0 I2 0

⇤ 0 I2

1

CCCCA

Hence,

D� =

0

BBBB@

A 0 0

0 B 0

⇤
0 #0 I2

1

CCCCA

Cutting along �, the resulting surface is homeomorphic to a punctured torus and applying theorem

5.1 we deduce that B is conjugated to a rotation with an angle of the form arccos(P (2 cos( (n�1)⇡
n ))

for some polynomial P . Cutting along �, we get a four-punctured sphere, and applying theorem 5.2

for ✏ small enough, we deduce that A is conjugate to a rotation with angle ⇥(t) that depends on t.

We conclude that D� has two invariant two-dimensional sub-vector spaces such that the restriction

of D� over the first and second subspace is conjugated to a rotation of angle arccos(P (2 cos( (n�1)⇡
n ))

and ⇥(t), respectively. For some polynomial P depending only on f1.

The first part, i.e. � is a pseudo-Anosov element, is a consequence of the second part; it is clear that

if � is isotopic to a periodic homeomorphism then D� along L does not have an irrational frequency

vector. Now it remains to check that � is not reducible. It is su�cient to prove:

Lemma 2. If a homeomorphism � of Sg,n is reducible then it does not admit an elliptic fixed point

with irrational frequency on any relative character variety XB(⇡1(Sg,n), SU(2)).
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Proof. If � is reducible then some of its powers preserve a simple closed curve �, therefore the levels of

the function f� are �-invariant which yields that D� at a fixed point can not be elliptic with irrational

frequency.
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Chapter 5

Invariant functions

5.1 Multi-twists and square-tiled surfaces

As discussed in the Background, one way of generating pseudo-Anosov homeomorphisms on a surface

S is by considering the group generated by Dehn-twists along two filling multi-curves.

Definition 5.1.1. A square-tiled surface is a finite collection of squares on C, where edges are glued

together two by two via a translation or a half-translation (i.e. a similarity with linear part �1).

The square-tiled surfaces are naturally endowed with a half-translation structure i.e. a structure

where the transition maps are of the form z 7! ±z + c, for some c 2 C. An a�ne transformation of

S is then a transformation such that it is a�ne for the charts of the half-translation structure. The

group generated by all the linear parts of such transformations is called the Veech group of S. We

shall point out here that SL(2,R) (in particular SL(2,Z)) acts on the set of square-tiled surfaces by

post-composition i.e. If S is a half-translation surface and A 2 SL(2,R) then A.S is the half-translation

surface obtained by composing the charts of S with A. In particular, we have that the stabilizer of

a half-translation surface is its Veech group. The following then holds for square-tiled surfaces (See

[GJ]):

Proposition 14. The Veech group of a square-tiled surface is a finite index subgroup of SL(2,Z).

From a square-tiled surface, one can obtain two multi-curves that consist of horizontal curves

�1, . . . , �n and vertical ones �1, . . . ,�m. In fact the surface S is decomposed in two di↵erent ways via

vertical and horizontal cylinders and the curves �1, . . . , �n (resp. �1, . . . ,�m) are exactly the generators
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of the fundamental groups of the horizontal cylinders (resp. vertical cylinders).

The converse is also true, let � = {�1, . . . , �n} and � = {�1, . . . ,�m} be two filling multi-curves

on an orientable surface S that is their complementary set is a union of disks. Then we can construct

a square-tiled surface by simply considering a square on each intersection between the curves centered

at the intersection point, and the gluing is deduced according to the combinatorial data of � and �.

We conclude:

Proposition 15. On orientable surfaces, the set of two filling multi-curves is in bijection with the set

of square-tiled surfaces, up to homeomorphisms.

In the case where the intersections between the curves of � and � have the same sign with respect to

the orientation of S, then the corresponding square-tiled surface has only translations as identifications

between the edges of the squares, hence we get an origami i.e. a ramified cover of the torus with only

one singular point at the basis (in this case the torus). To encode the origami we need two permutations:

let S1, . . . , Sd be the squares forming the origami S (Notice here that d is the degree of the ramified

cover). For i 2 {1, . . . d} denote by ai the edge to the left of the square Si and by bi the edge to the

bottom of Si. To determine the origami it is su�cient to decide which edge a�i is to the right to the

square Si and which edge b�0
i
is to the top of the square Si. Therefore one has:

Proposition 16. The set of pair of permutations that acts transitively on {1, . . . , d}, up to conjugation

of the permutation group of d elements, is in bijection with the set of connected origamis of degree d,

up to homeomorphisms.

For instance, consider d = 4, � = (1, 2, 3, 4) and �0 = (1, 3, 2, 4). In this example, we get a genus

2 surface where the corresponding two multi-curves � and � are exactly two curves, the vertical curve

� and the horizontal curve �, as illustrated in Figure 5.1.

The vertical curve � (resp. �) generates the fundamental group of the vertical (resp. horizontal)

cylinder made by the four squares. Viewing the surface in this way allows one to see that the matrix0

B@
1 0

4 1

1

CA (resp.

0

B@
1 4

0 1

1

CA) realizes an a�ne transformation on the surface that is in the isotopy class

of the Dehn-twist along the curve � (resp. �).
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Figure 5.1: Two filling curves in S2

5.2 SU(2)-character varieties and Goldman’s flow

The simplest actions on Hom(⇡1(S), SU(2)) are those defined via a Dehn-twist along a simple closed

curve. If a curve ↵ is non-separating, then its action on Hom(⇡1(S), SU(2)) can be expressed in a

simple way using the HNN extension by writing:

⇡1(S) = {⇡1(S \ ↵) [ � | �↵+��1 = ↵�
}

With ↵+ and ↵� being the resulting boundaries loops after cutting along ↵. So, on the Hom level, we

can write:

⌧⇤↵(⇢)(�) =

8
>><

>>:

⇢(�) if � 2 ⇡1(S \ ↵)

⇢(�).⇢(↵+) if � = �

If we denote the one-parameter subgroup of SU(2) of velocity 1 that passes through ⇢(↵+) (choosing

the shortest path between Id and ⇢(↵+)) by t 7! ⇠⇢(↵+)(t), then we have a natural flow ⌅↵ of S1 on

Hom(⇡1(S), SU(2)):

⌅t
↵(⇢)(�) =

8
>><

>>:

⇢(�) if � 2 ⇡1(S \ ↵)

⇢(�).⇠⇢(↵+)(t) if � = �
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It is a well-defined flow on the character variety except when tr(⇢(↵+)) = ±2. We restate here a

version of Theorem 4.3 in [G2] in the case where ↵ is a non-separating curve:

Proposition 17. The Hamiltonian flow of the function ⇢ 7! tr(⇢(↵)) with respect to the symplectic

form is a reparametrization of the previous flow ⌅↵.

Using the HNN extension, the restriction to ⇡1(S\↵) defines a projection P↵ : Hom(⇡1(S), SU(2)) 7!

Hom(⇡1(S \ ↵), SU(2)). Due to the above description, one has:

Proposition 18. The projection P↵ defines an S
1-bundle almost everywhere (except when ⇢(↵+) =

±Id) over its image. Moreover, its fibers coincide with the orbits of ⌅↵.

Proof. We notice first that the projection P↵ is invariant under the flow ⌅↵. Now we need to prove

that the orbits of ⌅↵ are exactly the fibers of P↵.

Let ⇢0 be a representation in Hom(⇡1(S \ ↵), SU(2)), We observe that the image of P↵ is the

algebraic subset defined by the polynomial function ⇢ 7! tr(⇢(↵+))� tr(⇢(↵�)). Therefore we assume

that tr(⇢0(↵+)) = tr(⇢0(↵�)). In order to find an extension of ⇢0 in Hom(⇡1(S), SU(2)), it is su�cient

to determine ⇢(�). The condition �.↵+.��1 = ↵� implies that ⇢(�) lies in a big circle S↵ ⇢ SU(2)

that depends only on ⇢0(↵+) and ⇢0(↵�).

The situation is not very di↵erent for a non-separating multi-curve ↵ = {↵1, . . . ,↵n}. In fact the

flows ⌅↵1 , . . . ,⌅↵n commutes, therefore we have an action of an n-dimensional torus Tn defined almost

everywhere on the representation variety.

Similarly, we denote by P↵ the restriction to ⇡1(S \↵). Let us now denote M↵ the group generated

by ⌧↵1 , . . . , ⌧↵n and consider a homeomorphism f = ⌧ i1↵k1
� · · ·� ⌧ in↵kn

in M� , for some non-zero integers

i1, . . . , in, then one has:

Proposition 19. The ergodic components of f , the ergodic components of M↵, and the fibers of P↵

are almost everywhere equal.

Proof. The proof relies on the relation between the action of a single Dehn-twist ⌧� and the flow ⌅� ,

one has the following (See section 2 in [GX1] for more details):

⌧⇤� (⇢) = ⌅
✓(⇢(�+))
� (⇢)
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Where ✓(X) is the angle of the matrix X, more precisely, ✓(X) = arccos( tr(X)
2 ). Since the curves

do not intersect, f preserves the functions ⇢ 7! ✓(⇢(↵+
i )), for all i 2 {1, . . . , n}. Hence we deduce that

for a generic representation ⇢, the automorphism f acts by the same translation inside the ⌅↵-orbit of

⇢ which is generically di↵eomorphic to a torus Tn. The fact that {✓(⇢(↵+
i )}

i=n
i=1 can be chosen freely

yields the first part. The proof of the second part i.e. the relation between P↵ and M↵ is the same as

the proof of Proposition 18.

The last proposition says that one can not distinguish measurably between the action of such an

f 2 M� and the action of the whole group M� .

Remark 5.2.1. If ↵ = {↵i}
i=n
i=1 is a non-separating multi-curve then the image of P↵ is the algebraic

variety defined to be the zero locus in Hom(⇡1(S \ ↵), SU(2)) of the polynomials ⇢ 7! tr(⇢(↵+
i )) �

tr(⇢(↵�
i )), for i 2 {1, . . . n}.

5.3 Foliations on the intersection of quadrics

To analyze the action of two multi-twists, let us reflect on a larger family of algebraic foliations. On

the a�ne space R
n
⇥ R

n, let {fi}i=m
i=1 be a collection of bilinear forms on R

n
⇥ R

n and denote by f

the bilinear map (f1, . . . , fm). Set V to be the zero locus of the maps f . Over the algebraic variety V

we derive two natural foliations:

For A 2 R
n and B 2 R

n, let A and B be the intersection of V with the a�ne subspaces {A}⇥R
n

and R
n
⇥ {B} i.e. the levels of the maps X 7! f(A,X) and X 7! f(X,B), respectively. Let C to be

the equivalence relation generated by the two foliations. Let PA : V 7! R
n and PB : V 7! R

n be the

projection to the first and the second components, respectively.

At this point, one can ask whether the saturation C fills the variety V or not. The answer depend

on the ability to separate the two variables A and B from each other, in other words:

Proposition 20. If V admits a non-constant function that factors through PA and PB simultaneously,

then the function is constant on the C-classes.

Example 5.3.1. Let V ⇢ R
2
⇥ R

2 be the quadric defined by the bilinear map f(a1, a2, b1, b2) =

a1b1 + a2b2. Then the function a1
a2

= �
b2
b1

is constant on the C-classes.
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Example 5.3.2. If we consider R
3 instead of R

2 that is the quadric V ⇢ R
3
⇥ R

3 defined by

f(a1, a2, a3, b1, b2, b3) = a1b1 + a2b2 + a3b3, then no such function exists. We simplify the task

by considering the zero locus of a1b1 + a2b2 = �1 on the product of the projective spaces of the

two components. Therefore the new foliations A and B are the integral curves of the vector fields

(0, 0, b2,�b1) and (a2,�a1, 0, 0), respectively.

On the SU(2)-representation variety

Let � and � be two filling multi-twists with one disk as complementary and n positive intersections in

total (intersections having the same sign with respect to the orientation of S). The dynamics of the

group generated by M� and M� on the representation variety Hom(⇡1(S), SU(2)) ties into the previous

discussion. Let S be the origami associated to � and �. Let {a1, . . . , an} and {b1, . . . , bn} be the

generators of ⇡1(S \ �) and ⇡1(S \ �), respectively.

Figure 5.2: Square Si in the Square-tiled surface

The fundamental groups ⇡1(S \ �), ⇡1(S \ �) and ⇡1(S) are over-generated by {a1, . . . , an},

{b1, . . . , bn} and {a1, b1, . . . , an, bn}, respectively. The relations between the generators {a1, . . . , an}

and {b1, . . . , bn} are given by the square relations:

ai.b�0(i) = bi.a�(i)

for i 2 {1, . . . n}. For a representation ⇢ set Ai = ⇢(ai) and Bi = ⇢(bi), for i 2 {1, . . . , n}. Since the

complementary of � and � is one disk, the corresponding surface S belongs to the stratum H(2g� 2),

using Proposition 19, we get:
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Proposition 21. Let S be a square-tiled surface that belongs to the minimal stratum H(2g � 2) with

all vertices identified to one point then the map ⇢ 7! (A1, . . . , An, B1, . . . , Bn) is an embedding of

Hom(⇡1(S), SU(2)) into SU(2)2n and the image V is an algebraic variety defined by the square relations:

AiB�0(i) �BiA�(i) = 0

In addition, the foliations A and B defined on V ⇢ SU(2)n ⇥ SU(2)n are exactly the ergodic

component of the subgroups M� and M�.

5.4 Invariant functions

In what follows, we view SU(2) as the unit sphere of the quaternion numbers H. Denote by H
0 the

subspace of imaginary vectors. We endow H with the canonical scalar product (X,Y ) 7! tr(X.Y )

which is bi-invariant, i.e. If A,B 2 SU(2), then the linear map:

X 7! A.X.B

is an isometry of H. Conversely, every isometry of H can be expressed in this way.

Let us consider the following specific rectangle made with one vertex, two horizontal edges bI , bJ ,

and two vertical edges aI and aJ as illustrated in Figure 5.3 below.

Figure 5.3: A rectangle in the square-tiled surface

The rectangle relation writes aI .bJ = bI .aJ , so if ⇢ is a representation, then we set AI = ⇢(aI),
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AJ = ⇢(aJ), BI = ⇢(bI) and BI = ⇢(bI). Now the rectangle relation writes:

AI .BJ = BI .AJ

In general, it is not possible to separate the variables (AI , AJ) from (BI , BJ) i.e. to find a function

that factors through PA and PB simultaneously. However, under some conditions the task becomes

possible.

Lemma 3. If aI is conjugated to aJ and bI is conjugated to bJ then the two directions [AI �AJ ] and

[BI �BJ ] defined on P (H0) are equal.

Proof. Consider the following linear map, which is a function that depends only on AI and AJ :

 : H �! H

X 7! AI .X.A�1
J �X

The fact that AI is conjugated to AJ implies that the kernel of � is of rank 2 since non-zero elements

in the kernel are those who conjugate AI to AJ . So the image of �, denoted Im(�), is of rank 2.

Observe that Im(�) can not only contain traceless matrices; if tr � � vanishes then, in particular,

�(1) = AI .A
�1
J � 1 would be traceless which would imply that AI = AJ which does not hold in

general. From the rectangle relation, we deduce that

BI �BJ = AI .BJ .A
�1
J �BJ

Therefore BI �BJ 2 Im(�). Since BI and BJ are conjugate then

BI �BJ = Im(�) \H
0

The conjugacy assumption of AI and AJ together with the fact that �(AJ) = AI � AJ allow us to

deduce that:

[AI �AJ ] = [BI �BJ ]
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5.4.1 Examples on the representation variety of S2

(Proof of Theorem 1.2.1)

In what follows, � will denote the group generated by M� and M�. Using the previous lemma, one

can see that the following examples admit a function on Hom(⇡1(S), SU(2)) that factors through PA

and PB , simultaneously.

For instance, let us consider the square-tiled surface S0 below (Figure 5.4) made of three squares

with only one vertex and hence S0 has genus 2. We enumerate the squares of S0 from bottom to top.

Figure 5.4: The surface S0

Using the relation of square 1, i.e. a1.b2 = b1.a1, we deduce that b1 is conjugated to b2. The curve

a2.a3 is always conjugated to a3.a2. By looking at the rectangle made by squares 2 and 3, using the

relation a2.a3.b1 = b2.a2.a3, we conclude that for a representation ⇢, Lemma 3 applies and hence one

has:

[A2.A3 �A3.A2] = [B1 �B2]

In other words, the direction orthogonal to 1, A2, and A3 is exactly the direction of B1 �B2.
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Remark 5.4.1. In this example, one can see that the a�ne transformations of S0 given by:

0

B@
1 0

3 1

1

CA ,

0

B@
1 2

0 1

1

CA

are elements of �.

Lemma 3 applies to di↵erent surfaces of genus 2, For example, we can consider the famous square-

tiled surface S (Figure 5.5 below). The group � is generated by four Dehn-twists along two horizontal

loops and two vertical ones as defined in section 5.1. A finite index subgroup of the Veech group of S

is contained in �, this is a consequence of the fact that the two a�ne transformations of S:

0

B@
1 2

0 1

1

CA ,

0

B@
1 0

2 1

1

CA

generate a finite index subgroup of SL(2,Z).

Figure 5.5: The genus two surface S

After applying Lemma 3 on the second square knowing from the first and the third squares that

a1 is conjugated to a2 and b1 is conjugated to b2, we deduce that [A1 � A2] = [B1 � B2], hence

⇢ 7! [A1 �A2] is �-invariant on Hom(⇡1(S), SU(2)).
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5.4.2 Examples on the character variety of N4

(Proof of Theorem 1.2.2)

In this section, we will slightly modify the previous discussion by considering an arbitrary family of

filling curves � = {�1, . . . , �n} on a surface ⌃ (not necessarily consisting of two multi-curves).

Without loss of generality, one can assume that there are no three curves that intersect at a single

point. Now one can reconstruct the closed surface using the combinatorial data of the curves �1, . . . , �n.

Let � be an abstract family of curves, for each point of intersection p consider a square centered at p

with edges transversal to the curves that perform the intersection at p. The gluing among the squares

is then deduced by following the paths of the curves. As a result, if the surface is orientable, we get a

1
4 -translation surface i.e a Euclidean surface with identifications of the form z 7! R k.⇡

2
(z) + c, where

R k.⇡
2

is a rotation of angle k⇡
2 , for some k 2 Z and c 2 C. To summarize:

Proposition 22. The set of families of filling curves (possibly with self-intersections) is in bijection

with the square-tiled 1
4 -translation surfaces, up to homeomorphisms.

The fact that any 1
4 -translation surface has a half-translation surface as a double ramified cover

implies:

Corollary 5.4.1. Any family of filling curves is the image of two filling multi-curves via a ramified cover

of degree two.

Remark 5.4.2. For a general closed surface ⌃ (orientable or not), we shall add a reflection along the

x-axis to the group of rotations and translations to get a structure corresponding to any family of curves

on ⌃.

On the SU(2)-representation variety Hom(⇡1(⌃), SU(2)). The group � generated by the Dehn-

twists along �1, . . . , �n acts on it. Let us now denote the projection defined on Section 5.2 associated

with �i by Pi. The previous discussion can be adapted to this situation:

Lemma 4. A function that factors through Pi, for all i 2 {1, . . . , n}, is a �-invariant function on

Hom(⇡1(⌃), SU(2)).

The following example is a genus 4 non-orientable surface denoted N4. The curves {�1, �2, �3} are

in minimal position since the geometric intersection between any pair of curves is one, therefore the

curves {�1, �2, �3} are filling the surface. As shown in Figure 5.6 below:
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Figure 5.6: The non-orientable surface N4

The relation coming from the three squares above read:

8
>>>>>><

>>>>>>:

a1.b1 = b2.a2

c�1
2 .a1.c1 = a2

c�1
2 .b1.c1 = b2

For a representation ⇢ 2 Hom(⇡1(N4), SU(2)), we write:

8
>>>>>><

>>>>>>:

A1.B1 = B2.A2

C�1
2 .A1.C1 = A2

C�1
2 .B1.C1 = B2

The group � = h⌧�1 , ⌧�2 , ⌧�3i acts on Hom(⇡1(N4), SU(2)), and a function is �-invariant once

it can be written in terms of each of the following 4-uplets (A1, A2, B1, B2), (A1, A2, C1, C2) and

(B1, B2, C1, C2), simultaneously. Consider the isometry of H, �C : X 7! C�1
2 .X.C1. The system of
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equations can be rewritten as: 8
>>>>>><

>>>>>>:

A1.B1 = B2.A2

�C(A1) = A2

�C(B1) = B2

Taking the trace of the first equation we get:

tr(A1.B1) = tr(A2.B2)

From the last two equations and since �C is an isometry we deduce that the angle between A1 and B1

is equal to the angle between A2 and B2, in other words:

tr(A1.B
�1
1 ) = tr(A2.B

�1
2 )

Adding the two previous equations and using the parallelogram identity on SL(2,C) (i.e. tr(XY ) +

tr(XY �1) = tr(X).tr(Y ), for any X,Y 2 SL(2,C)), we get:

tr(A1)tr(B1) = tr(A2)tr(B2)

Finally, we deduce that the function:
tr(A1)

tr(A2)
=

tr(B2)

tr(B1)

is a �-invariant function on the SU(2)-character variety of N4. What is left to do is to check that

the function is not constant, for this purpose, it is su�cient to prove that both A1 and A2 can take

arbitrary values in SU(2).

Lemma 5. The projection ⇢ 7! (A1, A2) from Hom(⇡1(N4), SU(2)) to SU(2)2 is surjective.

Proof. For (A1, A2) 2 SU(2)2, take B1 in the sphere

{X 2 SU(2) | tr(X.A�1
1 ) = tr(A1.X.A�2

2 )}

Therefore B2 = A1.B1.A
�1
2 . The last condition is equivalent to saying that the angle between A1 and

B1 is equal to the angle between A2 and B2. This ensures the existence of an isometry �C in SO(4)

such that �C(A1) = A2 and �C(B1) = B2.
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Chapter 6

Ergodicity of the homeomorphism

group

Let Sg be the closed surface of genus g, Let us consider the SU(2)-representation variety of Sg which

is the space of all homomorphisms from the fundamental group of Sg to the unitary special group

SU(2). The fundamental group of Sg is generated by 2g elements {↵1, . . . ,↵g,�1, . . .�g} with only

one relation on the commutators [↵i,�i] = ↵i�i↵
�1
i ��1

i i.e.

⇡1(Sg) = {↵1, . . . ,↵g,�1, . . .�g|
gY

i=1

[↵i,�i] = 1}

For a representations ⇢ 2 Hom(⇡1(Sg), SU(2)), let us set Ai = ⇢(↵1) and Bi = ⇢(�i), for all i 2

{1, . . . , g}. This gives an embedding of Hom(⇡1(Sg), SU(2)) into SU(2)2g. Therefore the representation

variety is the algebraic variety defined to be the zero locus in SU(2)2g of the polynomial
Qg

i=1[Ai, Bi]�

1. The automorphism group Aut+(⇡1(Sg)) of the fundamental group acts by pre-composition on

Hom(⇡1(Sg), SU(2)) i.e. if � 2 Aut(⇡1(Sg)) then �.⇢ = ⇢ � ��1. This yields an action of Aut+ via

polynomial automorphisms on Hom(⇡1(Sg), SU(2)) that extends to polynomial action on SU(2)2g.

Fix a point p 2 Sg in the closed surface Sg. In this chapter, we study the action of the group of

orientation-preserving homeomorphisms Homeo+(Sg, p) fixing a base point p, viewed as elements of

Aut+(⇡1(Sg, p)) on the representation variety Hom(⇡1(Sg), SU(2)). This gives a version of Goldman

and Xia’s Theorem [GX1] about the ergodicity of the mapping class group on the SU(2)-character

variety but rather on the representation variety:
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Theorem. The group Homeo+(Sg, p) acts ergodically on the representation variety Hom(⇡1(Sg), SU(2))

with respect to the class of Lebegue measure, More precisely, ergodicity is ensured by the action of a

group generated by no more than 3g � 1 Dehn twists on Sg.

We begin the proof by considering the case of the once-punctured torus S1,1, we remind here that

its fundamental group is a free group generated by two elements. Here as shown in Figure 6.1 the

fundamental group at the base point p is generated by the two elements ↵ and �.

Figure 6.1: The punctured torus

The Dehn-twists along the two closed curves �1 and �2, up to suitable homeomorphisms isotopic

to the identity, give rise to two automorphisms ⌧1 and ⌧2 on h�1, �2i acting as follows: ⌧1(↵) = ↵,

⌧1(�) = �.↵ and ⌧2(↵) = ↵.�, ⌧2(�) = �. This defines two polynomial automorphisms on SU(2)2, T1

and T2 such that:

T1(A,B) = (A,B.A)

And,

T2(A,B) = (A.B,B)

.

Let us denote ⇠tX the one-parameter subgroup in SU(2) of velocity 1 that passes throughs X. When

studying the ergodicity on SU(2)2, the dynamics of hT1, T2i and the dynamics of the following two flows

are not di↵erent;

�t
1(A,B) = (A,B.⇠tA)

And,

�s
2(A,B) = (A.⇠sB , B)

.
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Now consider the projection P1 (resp. P2) from SU(2)2 to the first (resp. the second) component

and set P to be the projection to the word b = [↵.�.↵�1.��1] i.e. P (A,B) = ABA�1.B�1. One

notice that the word P is invariant by the flows �1 and �2 and we have:

Lemma 6. The fibers of the projection P are exactly the saturations of �1 and �2.

Proof. A t-step of the flow �1 followed by an s-step of the flow �2 then projected to the first component

gives a parameterization of a sphere in SU(2) ⇢ H, where H is the field of quaternion numbers, in

other words:

P1(�
s
2(�

t
1(A,B))) = P1(�

s
2(A,B⇠

t
A)) = A.⇠sB.⇠tA

On the other hand, P1(P�1
{K}), for K 2 SU(2), is again a sphere in SU(2) ⇢ H that is define by

the polynomial tr(AK)� tr(A), hence the two spheres must coincide. Now noticing that fixing A and

moving B in P�1
{K} define exactly the integral curves of �1, conclude the lemma.

Let us now consider the case of the twice-punctured torus together with the curves ↵, �, �, and �

as shown in Figure 6.2.

Figure 6.2: The twice-punctured torus

The fundamental group ⇡1(S1,2) is free group of rank three generated by ↵, � and c1 and we have:

⇡1(S1,2) = {↵,�, c1, c2|[↵,�] = c1.c2}

We have that � = ↵.�.↵�1.��1 = c1.c2. Let us focus on the action of the Dehn twist along � on the

curve �, writing � = c1.c2, we get ⌧�(�) = c1.�.c2.��1. Therefore on the representation variety the
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polynomial T� acts on ⇢(�) as follows:

T�(⇢)(�) = C1.⇢(�)
�1.C2.⇢(�) = C1.Ad⇢(�)C2

Where ⇢(c1) = C1 and ⇢(c2) = C2. It is equivalent to replace the action of T� by the flow ��:

�t
�(⇢)(�) = C1.⇠

�t
⇢(�).C2.⇠

t
⇢(�) = C1.Ad⇠t

⇢(�
C2

If ⇢(�) can be chosen freely and C1 is chosen freely inside a fixed sphere then ⇢(�) covers SU(2), in

other words:

Lemma 7. Let K 2 SU(2) be fixed and S ⇢ SU(2) is a sphere. The map EK : (X,Y ) �!

Y.X.Y �1.K.X�1, from SU(2)⇥ S to SU(2), is surjective.

Proof. For a generic X 2 SU(2), the map Y �! Y.X.Y �1 is a surjection to the set of elements

conjugated to X. Hence without loss of generality, one can assume that Y.X.Y �1 = X1 and X�1 =

X2, with only condition that tr(X1�X2) = 0. In particular, one can assume that tr(X1) = tr(X2) = 0.

Therefore the map r : K �! X1.K.X2 is an isometric involution in H. The fact that for any L 2 SU(2)

there exists an involution that sends K to L, yields the lemma.

Now we are ready to prove the Theorem announced before. The surface Sg can be viewed as g

handle glued to the sphere (Figure 6.3 is an illustration when g = 4 ). Let us denote these handles

by H1, . . . , Hg enumerated from left to right. For each handle, let ↵i,�i be the generators of the

fundamental groups of the once-punctured tori obtained after cutting along a curve isotopic bi (To

contain the base point p) (See Figure 6.3). Now let �i,j be a curve that tights the handles i to j (For

example, in Figure 6.3 we draw �1,2). Finally, the curves �i and �i are the support of the handle Hi.

Proof. If we consider Ti and T 0
i to be the polynomial automorphisms induced from the Dehn-twist action

along �i and �i, respectively. And �i, i be the induced flow, respectively. Then Lemma 6 implies that

the saturation of the flows �1, . . . ,�g, 1, . . . , g are the fibers of the map ⇢ 7! (B1, . . . , Bg), where

Bi := ⇢(bi), for all i 2 {1, . . . , g}. Because
Qg

i=1 Bi = 1, one can consider for instance, the map

⇢ 7! (B1, . . . , Bg�1). What is left to do is to show that one can change each matrix Bi in SU(2) for

g� 1 components via some induced flows. For this reason and without loss of generality let us assume

that we aim to change B1 2 {B1, B3, . . . , Bg}. A small neighborhood of �1,2 and b1 is a four-punctured

sphere, by gluing again the components homotopic to �1, we get a twice-punctured torus with one of
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Figure 6.3: Example for g = 4

the boundaries on the handle H2, let us call this boundary c1. We saw before in the proof of Lemma 6

that C1 := ⇢(ci) (seen as A) belongs to some sphere. Together with the fact the ⇢(�1,2) can be chosen

freely, we conclude using Lemma 7 the proof.
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