
Projections régulières, structure de Lipschitz des
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� M. Armin Rainer, Chercheur, Université de Vienne.
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Projections régulières, structure de Lipschitz des
ensembles définissables et faisceaux de Sobolev

Résumé

Dans cette thèse, nous abordons des questions autour de la structure métrique des
ensembles définissables dans les structures o-minimales. Dans la première partie, nous
étudions les projections régulières au sens de Mostowski, nous prouvons que ces projections
n’existent que pour les structures polynomialement bornées, nous utilisons les projections
régulières pour refaire la preuve de Parusiński de l’existence des recouvrements régulièrs.
Dans la deuxième partie de cette thèse, nous étudions les faisceaux de Sobolev (au sens de
Lebeau). Pour les fonctions de Sobolev de régularité entière positive, nous construisons ces
faisceaux sur le site définissable d’une surface en nous basant sur des observations de base
des domaines définissables dans le plan.

Mots clés : Geometrie métrique des singularities, Projections régulières, Structures
o-minimales, Theorie des singularities réels, Geometrie semialgebrique et sous analytique,
faisceaux de Sobolev.



Regular projections, Lipschitz structure of definable
sets and Sobolev sheaves

Abstract

In this thesis we address questions around the metric structure of definable sets in o-
minimal structures. In the first part we study regular projections in the sense of Mostowski,
we prove that these projections exists only for polynomially bounded structures, we use
regular projections to re perform Parusiński’s proof of the existence of regular covers. In the
second part of this thesis, we study Sobolev sheaves (in the sense of Lebeau). For Sobolev
functions of positive integer regularity, we construct these sheaves on the definable site of
a surface based on basic observations of definable domains in the plane.

Key words: Metric geometry of singularities, Regular projections, O-minimal struc-
tures, Real singularity theory, Semialgebraic and subanalytic geometry, Sobolev sheaves.
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Introduction

The metric study of singular spaces has been initiated by Mostowski in his paper ’Lip-

schitz equisingularity ’ (see[19]) to construct Lipschitz stratification for complex singular

spaces. The reel case has been explored by Parusiński (see [21]), where new techniques

such as L-regular decompositions and the preparation theorem were introduced. This tech-

niques have been useful for many applications (for example in the proof of Isoperimetric

inequality on subanalytic sets [25], approximation of geodesics on singular sets [1], Cm

semialgebraic sections over the plane [3], the construction of sheaves on the subanalytic site

[12], and series of works of Valette on the extension of PDE’s theory on singular spaces

(see [27], [28], [29], and [30])). The metric structure of real singular spaces have been also

studied by Valette in his paper [31], where he introduced metric triangulation, regular sys-

tems of hypersurfaces and the notion of good direction, that has been extremely useful for

application in different directions (intersection (co)homology and Lp cohomology of singular

spaces, algebraic geometry, and PDE’s on singular spaces).

In this thesis we are interested in questions around the metric study of singular spaces

definable in o-minimal structures on the real field (R,+, ·). In Chapter 2 we study Regular

projections in the sense of Mostowski. The regular projection theorem was first introduced

by Mostowski (see [19]) for complex analytic hypersurfaces, and then later a subanalytic

version was proved by Parusiński (see [21]). The theorem states that for any compact

subanalytic set X ⊂ Rn there exists a finite set of regular projections (see Definition 2.1.1

below). In [21], Parusiński showed that a generic choice of n+1 projections is sufficient. The

theorem has many applications, it leads to the proof of some important metric proprieties

of subanalytic sets, it has been used by Parusiński in [23] to prove the existence of Lipschitz

stratification of subanalytic sets, more precisely, to show that every compact subanalytic

set can be decomposed in a finite union of L-regular sets in such a way that it is easy to

glue Lipschitz stratifications of the pieces. The regular projection theorem has been also

used recently by Parusiński in [22] to prove the existence of regular cover for subanalytic

relatively compact open subsets which is used in [6] and [12] to construct Sobolev sheaves

on the subanalytic site. In this Chapter we prove that regular projections exists in any

polynomially bounded o-minimal structures and we show also that the result fails in non-

polynomially bounded structures. We use this result to adapt the proof of the existence of

regular covers given in [22], and as a consequence we have the existence of Sobolev sheaves

(in the derived sense and for negative regularity (see [12])) on any definable site.

In Chapter 3 we focus on the sheafification of Sobolev spaces on the subanalytic site.

The problem of the sheafification of Sobolev spaces on the subanalytic site is motivated by

Kashiwara’s proof of the Riemann-Hilbert correspondence [8] based on the construction of

the sheaf of tempered distribution on the subanalytic site (Grothendieck topology formed

by bounded open subanalytic sets and finite coverings). The sheafification in the derived

sense for negative fractional Sobolev spaces was given by Lebeau [12] based on the results

of Guillermou and Schapira in [6] and the existence of good subanalytic covers in [22]. In

this chapter we give an easy explicit construction of Sobolev sheaves (in the usual sense)
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for Sobolev spaces with regularities in N on definable surfaces based on basic properties of

definable domains in R2. This is a first part of a project on the geometric construction of

Sobolev sheaves the definable site of Rn.



3

Notation:

� P(X): the set of subsets of X.

� grad(f): is the gradient of a C1 function f .

� If f : A × B → C is a map, then for b ∈ B we denote by f(·, b) (or also by fb) the

map

f(·, b) : A→ C

x 7→ f(x, b).

� B(v, r) is the open ball of radius r and center v, and B(v, r) is the closed ball of

radius r and center v. We may also use the notations Br(v) and Br(v).

� Regp(X) is the set of points x ∈ X such that X is a Cp manifold near x, and

Singp(X) = X \Regp(X).

� For v ∈ Rn−1, πv : Rn → Rn−1 is the linear projection parallel to V ect((v, 1)).

� For a set A ⊂ Rn × Rm, for x0 ∈ Rn, we denote by Ax0 the set

Ax0 = {y ∈ Rm : (x0, y) ∈ A }.

� If F (y, x) : Rn × Rm → R is C1, we denote by D1F or DyF the differential of F

with respect to the first variable, and we denote by DxF or D2F the differential of F

with respect to the second variable.

� A denotes the topological closure of A.

� For a set U ⊂ Rn, we denote by ∂U := U \ Ů , where Ů is the interior of U .

� B ⊂ Rk is called an open (closed) box if it can be written as a product

B = I1 × ....× Ik,

where the I ′is are open (closed) intervals in R with I̊i 6= ∅ for each i.

� We denote by N the set of nonnegative integers.

� If A ⊂ R, we denote by A+, A−, and A∗ as the following

A+ = {x ∈ A : x > 0},
A− = {x ∈ A : x 6 0},
A∗ = {x ∈ A : x 6= 0}.

We set A∗+ := A+ ∩A∗ and A∗− := A− ∩A∗.

� A map f : R → R is said to be ultimately equal to 0 if there is M ∈ R such that

f(x) = 0 for all x > M .



� For n > m we denote by πnm : Rn → Rm the standard projection, and we will use π

for the case of m = n− 1.

� For a map f : A→ B, Γf denotes the graph of f .

� For two functions f 6 g : A→ R, we denote by Γ(f, g) the set:

Γ(f, g) := {(x, y) ∈ A× R : f(x) 6 y 6 g(x)}.

We will also use the notation Γ(A, f, g) if it is necessary to specify the set A.

� W s,2(Rn) : the space of Sobolev functions on Rn.

� ‖x‖E the norm of x in a normed space (E, ‖ · ‖).

� If we have functions φ1 < φ2 : A→ R, then Γ(φ1, φ2) denotes the set

Γ(φ1, φ2) := {(x, y) ∈ A× R : φ1(x) < y < φ2(y)}.

� Sn−1 denotes the standard sphere of Rn, that is the set of points in Rn with distance

equal to 1 from the origin.

� S(Rn) : the space of Schwartz functions on Rn.

� D(Rn) : the space of compactly supported functions on Rn.

� D′(Rn) : the topological dual of D(Rn), that is the space of distributions.
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Chapter 1

O-minimality

O-minimal geometry is a branch of mathematics that has been introduced in model theory.

It gives a beautiful context for tame geometry, a geometry where pathological phenomena

are not allowed but we still keeping the analytic and algebraic objects with more flexibil-

ity. In this chapter we will give a brief introduction to the basic concept of o-minimality.

we choose here to follow the spirit of axiomatizing the suitable properties of semialgebraic

geometry rather than going throw the model theoretical language.

An o-minimal structure on the field (R,+, ·) is a family D = (Dn)n∈N such that for any

n ∈ N, we have:

(1) Dn ⊂ P(Rn) is stable by complement and finite union.

(2) For any P ∈ R[X1, ..., Xn], we have Z(P ) ∈ Dn, where

Z(P ) = {x ∈ Rn : P (x) = 0}.

(3) π(Dn) ⊂ Dn−1, where π : Rn → Rn−1 is the standard projection.

(4) The sets in D1 are precisely the finite unions of intervals and points.

For a fixed o-minimal structure D, we have the definitions:

(•) Elements of Dn are called definable sets.

(•) If A ∈ Dn and B ∈ Dm, then a map f : A→ B is called a definable map if its graph

is a definable set.

(•) The o-minimal structure D is said to be polynomially bounded if for each definable

function f : R→ R, there is some n ∈ N such that |f(x)| ≤ xn for x big enough.

(•) For p ∈ N∪ {∞} a definable Cp-manifold is a manifold with finite atlas of definable

transition maps and definable domains, see e.g. [4].

Note that if A = {An}n∈N is a collection of sets An ⊂ P(Rn), then the smallest structure

on (R,+, ·) that contain A make sense since there is at least one structure that contain A
(the collection of all subsets of Rn for all n ∈ N). We denote this structure by (R,+, ·,A).

6



CHAPTER 1. O-MINIMALITY 7

Example 1.0.1. we present here some classical examples of o-minimal structures:

(1) Ralg := {Sn} the o-minimal structure of semialgabraic sets, that means A ∈ Sn if there

exist a finite number of polynomials Pi,j , Qi ∈ R[x1, ..., xn] such that

A = ∪j ∩i {x ∈ Rn : Qi(x) = 0 and Pi,j(x) > 0}

By the Taski-Seidenberg theorem Ralg is an o-minimal structure, and it is the smallest

one by definition.

(2) Ran := (R,+, ·,A), where An+1 is the collection of graphs of restricted analytic func-

tions on [−1, 1]n. (Ran)n is the set of globally subanalytic subsets of Rn. It follows

from Grabrielov’s complement theorem that Ran is an o-minimal structure.

(3) Rexp := (R,+, ·, exp) the smallest structure that contains the graph of the exponential

function x 7→ ex. It was proven by L. van den Dries [34] (by Model theory) that

Rexp is an o-minimal structure (see also Wilkie [37] and Khovanskii [9]). It follows

from Wilkie [37] that A ⊂ Rn is definable in Rexp if and only if there are N > n and

P ∈ R[x1, ..., xk, exp(xk+1), ..., exp(xN )] such that

A = πNn (Z(P )).

(4) Ran,exp := (R,+, ·,Ran, exp) the smallest structure that contains globally subanalytic

sets and the graph of the exponential function. It was proven by van den Dries and

Miller [35] that Ran,exp is o-minimal.

(5) Take f1, ..., fk : Rn → R a Pfaffian chain, and let P(f1, ..., fk) be the class of Pfaffian

functions, that is h ∈ P(f1, ..., fk) if there is Q ∈ R[x1, ..., xn, y1, ..., yk] such that

h(x) = Q(x, f1(x), ..., fk(x)).

By Wilkie [36] and Khovanskii [9] the structure Rf1,...,fk := (R,+, ·,P(f1, ..., fk)) is

o-minimal.

Theorem 1.0.2. (Miller’s Dichotomy [18]). An o-minimal structure D is either polyno-

mially bounded or contains the graph of the exponential function.

From Miller’s Dechotomy it’s clear that Ralg and Ran are polynomially bounded.

Definition 1.0.3. Let A an o-minimal structure on (R,+, ·). We define first order formula

(in the structure A) as follows:

(i) If A ∈ An (for some n ∈ N), then ϕ(x) := ”x ∈ A” is a first order formula.

(ii) If ϕ(x) and φ(x) are first order formulas, then ”not ϕ(x)”, ”ϕ(x) and φ(x)”, and

”ϕ(x) or φ(x)” are first order formulas.

(iii) If ϕ(x, y) is a first order formula and A definable sets, then ”∀y ∈ A : ϕ(x, y)” and

”∃y ∈ A : ϕ(x, y)” are first order formulas.

The following theorem is indispensable in practice.

Theorem 1.0.4. If ϕ(x1, ..., xn) is a first order formula, then the set of (x1, ..., xn) in Rn

which satisfy ϕ(x1, ..., xn) is definable.
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1.0.1 Cell decomposition.

Take p ∈ N. A definable set C ⊂ Rn is said to be a Cp-cell (with respect to a fixed system

of coordinates in Rn) if:

� Case n = 1: C is either a point or an open interval.

� Case n ≥ 2: C is one of the following:

• C = Γφ (the graph of φ), where φ : B → R is a Cp definable function, where B

is a Cp-cell in Rn−1.

• C = Γ(φ, ϕ) = {(x1, ..., xn) ∈ B × R : φ(x1, ..., xn−1) < xn < ϕ(x1, ..., xn−1)},
where φ and ϕ are two Cp definable functions on a Cp-cell B, such that φ < ϕ

with the possibility of φ = −∞ or ϕ = +∞.

A Cp-cell decomposition of Rn (with respect to a fixed system of coordinates) is defined by

induction as follows:

• A Cp-cell decomposition of R is a finite partition of R by points and open intervals.

• A Cp-cell decomposition of Rn is a finite partition A of Rn by Cp-cells, such that

π(A) is a Cp-cell decomposition of Rn−1, where

π : Rn → Rn−1

is the standard projection and π(A) is the family

π(A) = {π(A) : A ∈ A }.

Theorem 1.0.5. Let p ∈ N and {X1, ..., Xk} be a finite family of definable sets of Rn.

Then there is a Cp-cell decomposition of Rn compatible with this family, i.e. each Xi is a

union of some cells.

Proof. See [2] or [33].

Now we can define the dimension of a definable set. Take X a definable subset of Rn

and C a cell decomposition of Rn compatible with X. Then we define the dimension of X

by

dimC(X) = max{dim(C) : C ⊂ X and C ∈ C}.

This number does not depend on C, we denote it by dim(X).

From the cell decomposition theorem we get the following fundamental tools in o-minimal

geometry:

Lemma 1.0.6. (Monotonicity theorem). Let f :]a, b[→ R be a definable map. Then

there are points a = a0 < a1 < .. < ak = b such that f �]ai,ai+1[ is either constant or strictly

monotone on ]ai, ai+1[ for each i = 0, ..., k − 1.
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Proof. See [2] or [33].

Lemma 1.0.7. (Definable choice). Take A ⊂ Rn×Rm definable and πn+m
n : Rn×Rm →

Rn the standard projection. Then there is a definable map f : πn+m
n (A) → Rm such that

for any x ∈ π(A) we have (x, f(x)) ∈ A.

Lemma 1.0.8. (The curve selection Lemma). Let A be a definable subset of Rn and

a ∈ A \A. Let p ∈ N. Then there exists a Cp definable curve γ :]0, 1[−→ A \ {a}, such that

limt→0+ γ(t) = a.

Proof. See [2] or [33].

1.0.2 Lipschitz cell decomposition.

L-regular cell (Lipschitz cells) were introduced by A.Parusiński to prove the existence of

Lipschitz stratification of subanalytic sets ([23], see also [10]). We give here the definition

and some basic proprieties of L-regular cells. We fix A an o-minimal structure on (R,+, ·)

Definition 1.0.9. Let X ⊂ Rn be a definable subset. We say that X is L-regular if :

• X is a point in the case of dim(X) = 0.

• X is an open interval if dim(X) = 1 and n = 1.

• If dim(X) = n (with n > 1), then there is X ′ ⊂ Rn−1 L-regular and two C1 definable

functions with bounded derivatives φ1, φ2 : X ′ −→ R with φ1 < φ2, such that

X = {(x′, xn) ∈ X ′ × R : φ1(x′) < xn < φ2(x′)}.

• If dim(X) = k < n, then X is the graph of a C1 definable map φ : X ′ −→ Rn−k with

bounded derivatives on Int(X ′), where X ′ ⊂ Rk is L-regular and of dimension k.

We will also say that A is L-regular if it is so after a linear change of coordinates.

Theorem 1.0.10. Let X1, ..., Xl definable subsets of Rn, then there exists a finite definable

partition (Lk)k of
⋃
iXi compatible with each Xi such that each element Lk is L-regular.

Proof. See [23] or [10].

Here we recall some basic properties of L-regular cells, the proof is obvious by induction

on the dimension of L-cells.

Proposition 1.0.11. Let X ⊂ Rn be L-regular.

(1) If dim(X) = k < n then the standard projection πnk : Rn → Rk induces a bi-Lipschitz

mapping from X to X ′ = πnk (X).

(2) X \ ∂X is definably homeomorphic to the open ball B(0, 1) ⊂ Rdim(X).

(3) The inner and the outer metrics on X are equivalent, it means that for any x, y ∈ X
there is a definable continuous curve γ : [0, 1] → X and a constant C > 0 such that

γ(0) = x, γ(1) = y, and
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Length(γ) 6 C |x− y|.

(4) If dim(X) = n and φ : X → R is a C1 function with bounded derivative, then φ is

Lipschitz.



Chapter 2

Regular projections and

applications

In [22], Parusiński asked if the regular projection theorem and the existence of regular

covers can be shown in any o-minimal structures. A first answer was given by Nguyen [20],

he gives a Lipschitz version of this theorem, that is we can always find a finite set of regular

projections after applying a bilipschitz homeomorphism of the ambient space. Nguyen’s

proof is based on the cell decomposition Theorem and Valette’s result on the existence of

a good direction (see [31]). A direct consequence of this is the existence of regular covers

in any o-minimal structure.

In this chapter we give an answer to Parusiński’s question, we will prove that the regular

projection theorem works in any polynomially bounded o-minimal structure, and we will

give an example showing that this is no longer true in non-polynomially bounded o-minimal

structures. We will also give a weak version of the regular projection theorem in any o-

minimal structure, which is a straightforward consequence of the techniques used in [20]. We

will use this weak version to adopt the proof in [22] to show the existence of regular covers in

any o-minimal structure. Our fundamental tools for the proof will be the cell decomposition

and Miller’s result ([17]) to find a replacement for the Puiseux with parameter argument

used in [21].

2.1 Regular projection in the sense of Mostowski.

Let X ⊂ Rn be a definable subset of Rn. For any λ ∈ Rn−1, we denote by πλ : Rn → Rn−1,

the projection parallel to the vector (λ, 1) ∈ Rn. Fix ε and C positive real numbers and

p ∈ N∗. For v ∈ Rn−1 and x ∈ Rn we define the cone Cε(x, v) by

Cε(x, v) = {x+ t(v′, 1) : t ∈ R∗ and v′ ∈ B(v, ε)}.

Definition 2.1.1. We say that the projection πλ is (ε, p)-weak regular at a point x ∈ Rn

(with respect to X) if:

(1) (πλ)|X is finite.

(2) the intersection of X with the cone Cε(x, λ) is either empty or a disjoint finite union of

sets of the form

11
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Afi = {x+ fi(λ
′)(λ′, 1) : λ′ ∈ B(λ, ε)},

where the f ′is are non-vanishing Cp functions defined on B(λ, ε).

We say that the projection πλ is (ε, C, p)-regular at a point x ∈ Rn (with respect to X)

if moreover we have

(3) ‖grad(fi)‖ ≤ C |fi| on B(λ, ε) for all i.

Remark 2.1.2. The notion of regular projection introduced by Mostowski in [19] is not

exactly the same as the notion of good direction (regular projection in the sense of Valette

in [31], see also [20] for comparing both notions). One can show that a projection is regular

in the sense of Mostowski if and only if it is weak regular and good.

2.1.1 Weak regular projection theorem.

Let A be an o-minimal structure on (R,+, ·) (no condition on A).

Theorem 2.1.3. Let X be a definable subset of Rn such that dim(X) 6 n−1, and p ∈ N∗.
Then there are ε > 0 and {v1, ..., vk} ⊂ Rn−1 such that for every x ∈ Rn there is i such

that πvi is (ε, p)-weak regular at x with respect to X.

For the proof we need a few results. The following lemma was proved in [20] to show

a bi-Lipschitz version of the regular projection in arbitrary o-minimal structures. It states

that we can avoid definable sets with empty interior up to a decomposition and product in

a chosen box. This lemma is central in our proof even for the case of regular projections in

polynomially bounded structures.

Lemma 2.1.4. Take C a definable subset of Rn and let B be a box in Rk. Let ∆ be a

definable subset of Rn × Rk such that dim(∆x) 6 (k − 1), for all x ∈ C. Then there exists

a finite definable partition C of C, such that for each D ∈ C there is a box BD ⊂ B such

that we have

(D ×BD) ∩∆ = ∅.

Proof. Let’s first prove the following special case:

Lemma 2.1.5. Take a, b ∈ R ∪ {±∞} such that a < b. Let a = ξ0 < ξ1 < ... < ξk = b

be continuous definable functions on a definable set C ⊂ Rn. Then there is a definable

partition C of C such that for any D ∈ C there exist [aD, bD] ⊂ [a, b] such that

D × [aD, bD] ⊂ Γ(C, ξi, ξi+1) for some i ∈ {1, ..., k}.

Proof. Take a1 < a2 < ... < ak real numbers in [a, b]. Define

ξ+
1 = {(x, y) ∈ Γξ1 : y > a1} and ξ−1 = {(x, y) ∈ Γξ1 : y < a1},

H+
1 = π(ξ+

1 )×]a, a1[ , H−1 = π(ξ−1 )×]a1,+∞[,

C+
1 = π(ξ+

i ), C−1 = π(ξ−1 ).
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For i ∈ {2, ..., k} we define

ξ+
i = {(x, y) ∈ Γξi : y > ai} ∩H−i−1 and ξ−i = {(x, y) ∈ Γξi : y < ai} ∩H−i−1,

H+
i = π(ξ+

i )×]ai−1, ai[ and H−i = π(ξ−i )×]ai,+∞[,

C+
i = π(ξ+

i ) and C−i = π(ξ−i ).

Clearly we have

C = C+
1 t C

−
1 and C−i = C+

i+1 t C
−
i+1.

So C = {C+
i }i is a partition of C and we have that H+

i = C+
i ×]ai−1, ai[⊂ Γ(C, ξi, ξi+1), so

[aC+
i
, bC−i

] can be chosen in ]ai−1, ai[, and this finish the proof.

Take U a cell decomposition of Rn+k compatible with C × B and U0 = πn+k
n (U) the

induced cell decomposition on Rn. For each S ∈ U0 we put

U(S) = {A ∈ U : S = πn+k
n (A) and dim(A) = dim(S) + k}.

U(S) is the set of cells above S with fibers of maximal dimension, and it’s clear that

U(S) is not empty for any S ∈ U0. By refining cell decomposition, it’s easy to see that we

need just to prove the claim

Claim: There is a refinement C of U0 such that for any D ∈ C there is a box BD ⊂ B

such that D ×BD is in some element of U(S) for some S ∈ U0 such that D ⊂ S.

We prove by induction on k. The case of k = 0 is obvious. Assume k > 0 and the claim

is true for any l < k. Take the cell decomposition U ′ = πn+k
n+k−1(U) of C × B′ where

B′ = πkk−1(B). For S ∈ U0 we define

U ′(S) := {A ∈ U ′ : S = πn+k−1
n (A) and dim(A) = dim(S) + k − 1} = πn+k

n+k−1(U(S)).

Take S ∈ U0 and L ∈ U ′(S). By Lemma1.1.4 we get a partition
∑

L of L such that for any

D ∈
∑

L there is [aD, bD] such that D × [aD, bD] is contained in an element of U(S).

Take B a cell decomposition of C ×B′ compatible with

U ′
⋃

L∈U ′(S), S∈U0

∑
L

.

Put

B0 := πn+k−1
n (B).

By the inductive applied to B we get a partition C compatible with B0 such that for any

D′ ∈ C there is a box BD′ ⊂ B′ such that D′ × BD′ is contained in an element B(K) for

some K ∈ B0 and D′ ⊂ K. Finally C is the wanted partition in our claim.

Remark 2.1.6. In Lemma 2.1.4 we can replace Rn by Sn (we need this in the proof of

Lemma 2.1.16). Indeed take a definable subset C ⊂ Sn and ∆ ⊂ Sn ×Rk such that for any

x ∈ C

dim(∆x) < k.
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Fix B ⊂ Rk a box. If C = {x} consists of one point x then clearly ∆x has empty interior

(because dim(∆x) < k). So we can find a box Bx ⊂ B such that ({x}×Bx)∩∆ = ∅. Then

we can assume that C ⊂ Sn \{N0 = (0, 0, ..., 1)} and we go back to the case of Lemma 2.1.4

by identifying definably Sn \ {N0} and Rn.

We need Transversality theorem with parameters. It was used in [15] and the proof is

a consequence of Sard’s theorem in the setting of o-minimal structures.

Sard’s theorem in the o-minimal category: Take N and M two C1 definable

manifolds, f : N →M a definable C1 map, and s ∈ N. Take

Cs = {x ∈ N : rank(df(x)) < s}.

Then f(Cs) is definable and dim(f(Cs)) < s.

Proof. It’s clear that f(Cs) is definable since Cs is defined by a first order formula and f is

definable. Assume now that dim(f(Cs)) > s. By the definable choice (Lemma 1.0.7) there

are a C1 cell X ⊂ f(Cs) and a definable C1 map g : X → Cs such that:

f ◦ g(y) = y for all y ∈ X.

This implies that rank(df(g(y)) ◦ dg(y)) > s for any y ∈ X, and so rank(df(t)) > s for

any t ∈ g(X) ⊂ Cs and this is a contradiction.

Lemma 2.1.7. Let M , J , and N be definable manifolds, and let

f : M × J → N

be a C1 definable submersion. Take S a finite collection of C1 definable submanifolds of N .

Then

ρ(f,S) = {s ∈ J : f(·, s) is transverse to all elements of S}

is a definable set and we have dim(J \ ρ(f,S)) < dim(J).

Proof. It’s enough to assume that S consists of one single manifolds X ⊂ N . We have

that V = f−1(X) is a definable submanifold of M × J (because f is a submersion). Let

π : M × J −→ J be the projection on J . By Sard’s theorem we have that:

dim({s ∈ J : s is regular value of π|V }) < dim(J).

But a simple computation shows that if s is regular value of π|V then fs is transverse to X,

and this finish the proof.

Proof of Theorem 2.1.3 : Take m ∈ N. Let P (x, v, ε) be a property on (x, v, ε) ∈
Rn×Rm×R∗+, i.e a map P : Rn×Rm×R∗+ → {0, 1}. Denote by π : Rn×Rm×R→ Rn×Rm

the standard projection.

Lemma 2.1.8. If we have:
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(1) for all (x, v) ∈ Rn × Rm, ε and ε′ such that ε < ε′, we have

P (x, v, ε′) is true ⇒ P (x, v, ε) is true.

(2) X = {(x, v, ε) ∈ Rn × Rm × R∗+ : P (x, v, ε) is true} is definable and for all x ∈ Rn

dim(Bx) < m, where B is defined by

B = {(x, v) ∈ Rn × Rm : π−1(x, v) ∩ X = ∅}.

Then there are ε0 > 0 and A = {v1, ..., vk} ⊂ Rm such that for all x ∈ Rn there is some i

such that P (x, vi, ε0) is true.

Proof. By the assumptions (1) and (2), the function F : Rn × Rm → R+ given by

F (x, v) =

{
sup{ε : P (x, v, ε) is true} if {ε : P (x, v, ε) is true} 6= ∅,
0 if {ε : P (x, v, ε) is true} = ∅.

is well defined and definable.

Now take a cell decomposition D of Rn×Rm×R compatible with Rn×Rm×{0}, B×{0}
and ΓF (the graph of F ).

If Dn+m is the cell decomposition of Rn × Rm determined by D (it means that π(D) =

Dn+m), then for any C ∈ Dn+m of maximal dimension, some of the bands over C (at least

one) are in X and the others in X c. Hence, by Lemma 2.1.4, we can find a cell decomposition

D′n+m, finer than Dn+m, such that for all C ∈ D′n+m with dim(C) = n + m there is a box

[aC , bC ] ⊂ R∗+ such that C × [aC , bC ] ⊂ X .

Now, since dim(Bx) < m for all x ∈ Rn, we can apply Lemma 2.1.4 again and find a partition

P of Rn such that for all P ∈ P there is a box BP = [vP (1), v′P (1)]× ...× [vP (m), v′P (m)] ⊂
Rm with P ×BP included in some band CP of D′n+m, and hence

P ×BP × [aCP
, bCP

] ⊂ X .

Finally we can take A = {vP = (vP (1), ..., vP (m))}P∈P and ε0 = minP∈P{aCP
}.

Now we define PX(x, v, ε) as follows:

PX(x, v, ε) is true if πv is (ε, p)-weak regular at x with respect to X.

It is obvious that PX satisfies (1) of the precedent lemma. Let’s prove that also (2) holds

true for PX . We have

X = {(x, v, ε) : πv is ε-weak regular at x with respect to X}
= X1 ∪ X2,

where X1 and X2 are defined below.

X1 = {(x, v, ε) : Cε(x, v) ∩X = ∅}
= {(x, v, ε) : x+ t(v′, 1) /∈ X for any (t, v) ∈ R∗ ×B(v, ε)}.
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Hence X1 is defined by a first order formula, and therefore X1 is a definable set.

X2 = {(x, v, ε) : such that Cε(x, v) ∩X 6= ∅, Cε(x, v) ∩X ⊂ Regp(X),

and ∀y ∈ Cε(x, v) ∩X there are t ∈ R∗ and v′ ∈ B(v, ε) with

y = x+ t(v′, 1) and the line through x directed by (v′, 1) is

transverse to X at y}.

Hence X2 is also defined by a first order formula, thus it is a definable set. Finally X is

definable set. Let’s prove that dim(Bx) < n − 1 for all x ∈ Rn. Assume that this is not

true. For x ∈ Rn and v ∈ Rn−1 we denote by L(x, v) the line that passes through x and is

directed by (v, 1). For all x ∈ Rn we have

Bx = B1
x ∪ B2

x,

where

B1
x = {v ∈ Rn−1 : such that L(x, v) is not transverse to Regp(X)}

and

B2
x = {v ∈ Rn−1 : L(x, v) ∩ Singp(X) 6= ∅ }.

We define the definable map

φ : Rn−1 × R∗ → Rn

(v, t) 7→ φ(v, t) = x+ t(v, 1).

A simple calculation shows that φ is a submersion, hence it is a local diffeomorphism, but

since dim(Singp(X)) < (n− 1), we can deduce that

dim(φ−1(Singp(X))) < n− 1,

therefore this means that

dim(π(φ−1(Singp(X)))) < n− 1,

hence

dim(B2
x) < n− 1.

But by our assumption there must be an x0 ∈ Rn such that dim(B1
x0) = n− 1, and

B1
x0 = {v ∈ Rn−1 : such that φ(v, ·) is not transverse to Regp(X)}.

Finally, by Lemma 2.1.7 we deduce that dim(B1
x0) < n− 1, and this is a contradiction with

dim(B1
x0) = n− 1. This completes the proof of Theorem 2.1.3.

�
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Remark 2.1.9.(i) By the proof of Theorem 2.1.3 we can require {v1, ..., vk} to be chosen

in a given open subset of (Rn−1)k.

(ii) If dim(X) < (n− 1), then we can see that X2 = ∅, hence this means that we can find a

finite set {v1, ..., vk} ⊂ Rn−1 and ε > 0 such that for any x ∈ Rn there is an i such that

Cε(x, vi) ∩X = ∅.

Question 1. From the proof of Theorem 2.1.3 we can minimize the number of the projections

by

km := min{k ∈ N : k = |P| where P is a partition of Rn

such that for all P ∈ P there is a box

BP = [vP (1), v′P (1)]× ...× [vP (m), v′P (m)] ⊂ Rm

such that P ×BP is included in some band CP of D′n+m}.

Clearly this number depends on n and X, therefore we ask the question:

Can the number of projections be chosen independently of X?

Question 2. Can the set of projections be chosen in an open definable dense subset of

(Rn−1)k?

2.1.2 Counterexample in non-polynomially bounded o-minimal structures.

Fix A a non-polynomially bounded o-minimal structure on (R,+, ·). Assume that the

Regular projection theorem is true for this structure, and consider the set X defined by

X = X1 ∪X2,

where

X1 = {(x, axa+1, xa+1) : x > 0 and a ∈ R}
X2 = {(x,−axa+1, xa+1) : x > 0 and a ∈ R}.

For all p ∈ N∗ we have : Regp(X) = X \{(x, 0, x) : x > 0}, and the connected components

of Regp(X) are Cp-manifolds.

By Miller’s Dichotomy (Theorem 1.0.2), the graph of the exponential function x 7→
exp(x) is a definable set, and therefore X is a definable set.

Take the germ of the curve x(s) = (s, 0, 0). By the cell decomposition and the assumption

there are δ > 0, a vector v = (v1, v2) ∈ R2 , ε > 0 and C > 0 such that for all s ∈ [0, δ[ we

have one of the following two cases:

(1) Cε(x(s), v) ∩X = ∅ .

(2) Cε(x(s), v) ∩ X = tAf is , where f is : B(v, ε) → R∗ are Cp-regular definable ordered

functions such that for all s, i, and λ ∈ B(v, ε) we have

‖grad f is(λ)‖
|f is(λ)|

≤ C.
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We are interested in the second case, because for s small enough we have

Cε(x(s), v) ∩X 6= ∅.

To obtain a contradiction, let’s prove the next two facts:

Fact 1 : For λ = (λ1, λ2) ∈ B(v, ε), the functions s 7→ f is(λ) are characterized by the

functional equation

f is(λ) = (s+ λ1f
i
s(λ))±λ2+1.

Indeed, take s ∈ [0, δ[.

Since x(s) + f is(λ)(λ, 1) ∈ Cε(x(s), v) ∩X, there are some x̂ ∈ R+ and a ∈ R such that

x(s) + f is(λ)(λ, 1) = (x̂,±ax̂a+1, x̂a+1).

Hence

x̂ = s+ f is(λ)λ1,

f is(λ) = x̂a+1,

±ax̂a+1 = λ2x̂
a+1.

And this implies

λ2 = ±a and f is(λ) = (s+ λ1f
i
s(λ))±λ2+1.

But since the sets Af is are connected definable Cp-manifolds and the connected components

of Regp(X) are Cp-definable manifolds we deduce that the sign ± on λ2 depends only on i.

Let’s take λ ∈ B(v, ε) and a definable continuous function s 7→ ts ∈ R∗+ such that

ts = (s+ λ1ts)
±λ2+1.

Fix s ∈ [0, δ[. Then we have

x(s) + ts(λ, 1) ∈ Cε(x(s), v).

Let’s take

x̂ = s+ λ1ts and a = ±λ2.

Then

x(s) + ts(λ, 1) = (x̂,±ax̂a+1, x̂a+1).

Hence

x(s) + ts(λ, 1) ∈ Cε(x(s), v) ∩X.

This implies that there are is and λ′ ∈ B(v, ε) such that

x(s) + ts(λ, 1) = x(s) + f iss (λ′)(λ′, 1).
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And this implies that λ = λ′ and ts = f iss (λ).

By the fact that f1
s < .... < fks (because these functions are ordered), and the functions

s 7→ ts and s 7→ f is(λ) are continuous and definable, we deduce that is doesn’t depend on

s, hence s 7→ ts is one of the functions s 7→ f is(λ).

This finishes the proof of Fact 1.

Fact 2:

(•) If λ = (λ1, λ2) ∈ B(v, ε) is such that λ2 > 0 , then there is a solution s 7→ ts of the

equation

ts = (s+ λ1ts)
λ2+1

such that lims→0 ts = 0.

For that, we define the function F : R2 → R by

F (s, t) =

{
t− (s+ λ1t)

λ2+1 if s+ λ1t > 0,

t if s+ λ1t 6 0.

F is a C1 function and we have

F (0, 0) = 0 and ∂F
∂t (0, 0) = 1.

Hence by the Implicit Function Theorem, there is a continuous function s 7→ t(s) such

that t(0) = 0 and F (s, t(s)) = 0.

(•) If λ ∈ B(v, ε) is such that λ2 < 0 , then there is a solution s 7→ ts of the equation

ts = (s+ λ1ts)
−λ2+1

such that

lim
s→0

ts = 0.

We use the same argument as in the first case by applying the Implicit Function

Theorem to the function:

F (s, t) =

{
t− (s+ λ1t)

−λ2+1 if s+ λ1t > 0,

t if s+ λ1t 6 0.

Now we will discuss the projection in two cases:

� Case 1: Assume that v2 > 0, and take λ = (λ1, λ2) ∈ B(v, ε) such that λ2 > 0.

From Facts 1 and 2 there is an i0 such that lims→0 f
i0
s (λ) = 0 and
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f i0s (λ) = (s+ λ1f
i0
s (λ))λ2+1.

Therefore we have:

∂f i0s
∂λ2

(λ) =

ln
(
s+ λ1f

i0
s (λ)

)
+

(λ2 + 1)λ1
∂f

i0
s

∂λ2
(λ)

s+ λ1f
i0
s (λ)

 f i0s (λ).

Then we have:

∂f
i0
s

∂λ2 (λ)

f i0s (λ)

(
1− (λ2 + 1)λ1

(
s+ λ1f

i0
s (λ)

)λ2)
= ln

(
s+ λ1f

i0
s (λ)

)
.

Hence, since λ2 > 0 and lims→0 f
i0
s (λ) = 0, we deduce that

lim
s→0

∣∣∣∣∣∣
∂f

i0
s

∂λ2 (λ)

f i0s (λ)

∣∣∣∣∣∣ = +∞.

Thus, this is a contradiction with the fact that∣∣∣∣∣∣
∂f

i0
s

∂λ2 (λ)

f i0s (λ)

∣∣∣∣∣∣ ≤ C ∀s.
� Case 2: Assume that v2 < 0, and take λ = (λ1, λ2) ∈ B(v, ε) such that λ2 < 0.

From Fact 1 and 2 there is an i0 such that

lim
s→0

f i0s (λ) = 0

and

f i0s (λ) =
(
s+ λ1f

i0
s (λ)

)−λ2+1
.

We have

∂f i0s
∂λ2

(λ) =

− ln
(
s+ λ1f

i0
s (λ)

)
+

(−λ2 + 1)λ1
∂f

i0
s

∂λ2 (λ)

s+ λ1f
i0
s (λ)

 f i0s (λ).

Then

∂f
i0
s

∂λ2 (λ)

f i0s (λ)

(
1− (−λ2 + 1)λ1

(
s+ λ1f

i0
s (λ)

)−λ2)
= − ln

(
s+ λ1f

i0
s (λ)

)
.

Hence, since −λ2 > 0 and lims→0 f
i0
s (λ) = 0, we deduce that

lim
s→0

∣∣∣∣∣∣
∂f

i0
s

∂λ2 (λ)

f i0s (λ)

∣∣∣∣∣∣ = +∞.

Hence this is a contradiction with the fact that∣∣∣∣∣∣
∂f

i0
s

∂λ2 (λ)

f i0s (λ)

∣∣∣∣∣∣ ≤ C ∀s.
�
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2.1.3 Regular projection theorem in polynomially bounded structures.

Let A be an o-minimal structure on (R,+, ·) and let K be the field of exponents of A, it

means that

K = {r ∈ R : x 7→ xr is definable in A }.

Before beginning the proof of the theorem we recall a few results:

Lemma 2.1.10. (Piecewise Uniform Asymptotics). Assume that A is polynomially

bounded. Let f : Rm × R → R be a definable function. Then there is a finite S ⊂ K such

that for each y ∈ Rm either the function f(y, ·) is ultimately equal to 0 or there exists r ∈ S
such that limt→+∞

f(y,t)
tr ∈ R∗.

Proof. This is proven by induction on m.

� Case m = 0: This is a direct consequence of Miller’s Dichotomy, for any definable

function f : R→ R there is r ∈ K such that if f not ultimately 0 then

lim
t→+∞

f(t)

tr
∈ R?.

A simple computation shows that

r = lim
t→+∞

tf ′(t)

f(t)
.

� Case m > 0: Assume that the statement is true for definable functions on Rk × R for

each k < m. Let f : Rm × R→ R be definable. Take C = {C1, ..., Cl} a cell decomposition

of Rm. So for each i ∈ {1, ..., l} there is some ki 6 m and a definable homeomorphism

φi : Rki → Ci.

By the induction hypothesis for each i such that ki < m, there is a finite set Si ⊂ K that

satisfies the statement of the lemma for the function (x, t) 7→ f(φi(x), t). Now take i such

that ki = m. This implies that Ci is open connected subset of Rm. By refining this cell

decomposition we can assume that for any y ∈ Ci

lim
t→+∞

f(y, t) /∈ R?,

and the unique definable function

r : Ci → K ⊂ R,

such that for any y ∈ Ci we have limt→+∞
f(y,t)

tr(y)
∈ R?, is C1.

Now we have the definable function

Ci × R+ −→ R, (y, t) 7→ tr(y) = lim
x 7→+∞

f(y, xt)

f(y, x)
.

Hence the function

(y, t) 7→ ∂r

∂yj
(y) ln(t) =

∂
∂yj

(tr(y))

tr(y)

is definable. But since the o-minimal structure doesn’t define the logarithmic function,

then we have
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grad(r)(y) = 0 for any y ∈ Ci.

Since Ci is connected and open, the function r is constant and equal to some ri ∈ K. Finally

we take

S = ∪i∈{1,...,l}Si.

Lemma 2.1.11. Let U ⊂ Rk be a nonempty definable open set and

M : U×]0, α[→ R

be a C1 definable map. Suppose there exists K > 0 such that |M(y, t)| ≤ K, for all

(y, t) ∈ U×]0, α[. Then there are a closed definable subset F of U with dim(F ) < dim(U)

and continuous definable functions C, τ : U \ F → R∗+, such that for all y ∈ U \ F we have

‖DyM(y, t)‖ ≤ C(y) for all t ∈]0, τ(y)[.

Proof. We assume that the assertion of the lemma is false, so this means that we can find

an open definable set B ⊂ U such that for any y ∈ B we have that

lim
t→0+

‖DyM(y, t)‖ = +∞.

By taking a cell decomposition of B compatible with the sets

Yi = {y ∈ U : lim
t→0+

∣∣∣∣∂M∂yi (y, t)

∣∣∣∣ = +∞}

for i = 1, ..., k, we can find an open definable B′ ⊂ B and i ∈ {1, ...., k} such that for any

y ∈ B′ we have

lim
t→0+

∣∣∣∣∂M∂yi (y, t)

∣∣∣∣ = +∞.

Now Let τ : B′ −→]0, α[ be the definable function given by:

τ(y) = sup{s :

∣∣∣∣∂M∂yi (y, .)

∣∣∣∣ is strictly decreasing on ]0, s[}.

By shrinking B′ we can assume that τ is continuous and τ > α′ for some α′ > 0. We

introduce the definable function φ :]0, α′[→ R+ given by

φ(t) = inf{
∣∣∣∣∂M∂yi (y, t)

∣∣∣∣ : y ∈ B′}.

From one side we can shrink B′ again, such that limt→0+ φ(t) = +∞. From another side

we have that for all y ∈ B′ and t ∈]0, α′[

φ(t) 6

∣∣∣∣∂M∂yi (y, t)

∣∣∣∣ .
Therefore this implies that for any y, y′ ∈ B′ and any t ∈]0, α′[ we have∣∣M(y, t)−M(y′, t)

∣∣ > φ(t)‖y − y′‖.

Hence this implies φ(t) 6
2K

diam(B′)
, and this is a contradiction.
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In all the rest of this section we assume that the o-minimal structure A is polynomially

bounded.

Lemma 2.1.12. Take Ω a definable open neighborhood of 0 in R × Rm, and a definable

function

f : Ω→ R
(x, y) 7→ f(x, y),

such that f−1(0) ⊂ (Ω∩ ({0}×Rm)) and f is C1 with respect to y on Ω\ ({0}×Rm). Then

there exists a definable set W ⊂ (Ω∩({0}×Rm)) with dim(W ) < m, such that for all (0, y) ∈
Ω \W there are some ε > 0 and C > 0 such that we have on B((0, y), ε)∩ (Ω \ ({0}×Rm))

‖Dyf‖ 6 C |f |.

Proof. We can assume that f > 0. Let’s assume that the statement is not true. Then we

can find O ⊂ (Ω ∩ ({0} × Rm)) with dim(O) = m and for all (0, y) ∈ O we have

(∗) lim
x→0+

‖Dyf(x, y)‖
‖f(x, y)‖

= +∞.

Now we can find an open definable set U ⊂ O and α > 0 such that ]0, α[×U ⊂ Ω (here we

identify U with an open subset of Rm). Since f−1(0) ⊂ (Ω∩ ({0}×Rm)), by Lemma 2.1.10

there exists an open set B ⊂ U and r ∈ K such that

f(x, y) = c(y)xr + φ(x, y)xr, for y ∈ B and α′ > x > 0 for some α′ < α,

where c is a definable function on B with c(y) 6= 0 for all y ∈ B, φ definable such that

limx→0 φ(x, y) = 0 for all y in B. Therefore for any y ∈ B and x ∈]0, α′[ we have

‖Dyf(x, y)‖
‖f(x, y)‖

=
‖Dc(y) +Dyφ(x, y)‖
‖c(y) + φ(x, y)‖

6
‖Dc(y)‖+ ‖Dyφ(x, y)‖
‖c(y) + φ(x, y)‖

.

But by Lemma 2.1.11 and the fact that limx→0 φ(x, y) = 0 for all y in B, we can shrink B

and ]0, α′[ and assume that there is a continuous definable function y 7→ M(y) > 0 such

that for any (x, y) ∈]0, α′[×B we have

‖Dyφ(x, y)‖ 6M(y).

Hence for any y ∈ B

lim
x→0+

‖Dyf(x, y)‖
‖f(x, y)‖

6
‖Dc(y)‖
‖c(y)‖

+
M(y)

‖c(y)‖
,

and we can shrink B such that c is bounded away from 0, M is bounded, and ‖Dc‖ is

bounded. Finally this contradicts (∗).

Lemma 2.1.13. Let f : [0, ε[×Ω → R be a definable function, C1 with respect to y on

]0, ε[×Ω, where Ω is an open definable subset of Rm. Then we can find a definable subset

W ⊂ Ω with dim(W ) < m and such that for every y0 in Ω \W there are r > 0, ε′ > 0, and

C > 0 such that we have
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‖Dy0f(x, y)‖ 6 C |f(x, y)| for all (x, y) ∈]0, ε′[×B(y0, r).

Proof. Take Z = f−1(0), and take C a cell decomposition of [0, ε[×Ω compatible with

{0}×Ω and Z ∩ (]0, ε[×Ω). Hence Ω is a finite disjoint union of cells of C. Take O ∈ C such

that O ⊂ Ω and dim(O) = m. The cells of dimension smaller than m will be chosen to be

in the set W . We discuss two cases:

� Case 1: There is a cell B ⊂ Z of maximal dimension (i.e dim(B) = m + 1) such that

O ⊂ B. In this case at each point (0, y) ∈ O we can find a neighborhood of (0, y) in

]0, ε[×Ω, where f ≡ 0 on this neighborhood, hence in this neighborhood ‖Dyf‖ ≡ 0, then

the result holds at (0, y) for any C > 0.

� Case 2: There is no cell B ⊂ Z of maximal dimension such that O ⊂ B. In this case by

Lemma 2.1.12 we can find a definable set WO ⊂ O with dim(WO) < m and such that for

all (0, y) ∈ O \WO we can find ry > 0, εy > 0, and Cy > 0, such that ‖Dyf‖ 6 Cy |f | on

]0, εy[×B(y, ry).

For cells like in case.1 we define WO := ∅. So finally the set

W :=

 ⋃
O, with dim(O)=m

WO

⋃ ⋃
dim(O)<m

O


satisfies the required properties.

Definition 2.1.14. LetX be a definable subset of a definable manifoldN , and Ω a definable

open subset of Rm. Take f : X × Ω → R , (x, y) 7→ f(x, y) a definable function and C1

with respect to y. We say that f is X-rectifiable with respect to y if we can find a definable

partition P of X, and c > 0 such that for every D ∈ P there is a box BD ⊂ Ω such that

∀x ∈ D and ∀y ∈ BD : ‖Dyf(x, y)‖ 6 c |f(x, y)|.

Remark 2.1.15. It is obvious that if there is a finite definable cover (Xi)i of X such that

for each i f|Xi×Ω is Xi-rectifiable with respect to y, then f is X-rectifiable with respect to

y.

Lemma 2.1.16. Let X be a definable subset of Sn, Ω be an open definable subset of Rm,

and x0 ∈ ∂X. Let f : X × Ω → R, (x, y) 7→ f(x, y) be a definable function, C1 with

respect to y. Then there is a definable neighborhood U of x0 in Sn such that f|U∩X×Ω is

U ∩X-rectifiable with respect to y, recall that it means that we can find α > 0, c > 0, C a

definable partition of X, and B a finite collection of boxes in Ω such that for every C ∈ C
with x0 ∈ C, there is BC ∈ B such that

∀x ∈ C with d(x, x0) < α, ∀y ∈ BC : ‖Dyf(x, y)‖ 6 c |f(x, y)|.

Proof. Induction on m.
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• The case of m = 1:

We will proceed by contradiction. So assume that Ω =]a, b[ and there is no neighborhood

U of x0 in Sn such that f|U∩X×Ω is U ∩X-rectifiable with respect to y. We will discuss the

next two cases:

� Case 1: Assume that f−1(0) = ∅. We define the function

g : X × Ω→ R+

by

g(x, y) =
‖Dyf(x, y)‖
|f(x, y)|

.

Let’s define the set

O = {(x, y) ∈ X × Ω : such that g(x, ·) is monotone near y }.

Since O can be expressed by a first order formula, O is a definable subset of X × Ω.

Now take the set
∑

= (X × Ω) \O. By Lemma 1.0.6 we have for all x ∈ X

dim(
∑

x) = 0 < dim(Ω) = 1.

Hence by Lemma 2.1.4 we can find a definable partition C1 of X such that for all

C ′ ∈ C1 there is a box BC′ =]ac′ , bc′ [⊂ Ω such that

C ′ ×BC′ ∩
∑

= ∅.

Then this means that for every x ∈ C ′, g(x, ·) is monotone on BC′ , but we need that

the monotonicity type does not depend on x but only on C ′. Let’s choose C0 to be a

partition of X compatible with C1 and a collection of sets {M+
C′ ,M

−
C′ ,M

0
C′}C′∈C1 , where

M+
C′ , M

−
C′ , and M0

C′ are defined by

M+
C′ = {x ∈ C ′ : g(x, ·) is increasing},

M−C′ = {x ∈ C ′ : g(x, ·) is decreasing},
M0
C′ = {x ∈ C ′ : g(x, ·) is constant}.

Hence the monotonicity type of g(x, ·) depends only on the elements of C0, it means

that for any C ∈ C0 there is a box BC =]aC , bC [ in Ω such that for any x ∈ C, g(x, .) is

monotone on BC , with the same monotonicity type for all x ∈ C . We now apply our

assumption to C0. Then we can replace X by an element C ∈ C0, with x0 ∈ C such

that for every box B in Ω, g is not bounded on C ×B. Take DC = [dC , eC ] ⊂ BC and

let’s consider the graph of g on C ×DC

Γg = {(x, y, g(x, y)) : y ∈ DC , x ∈ C} ⊂ C ×DC × (R+ ∪ {+∞}).

Consider Γg the closure of Γg in C ×DC × (R+ ∪ {+∞}). But, since for any box B in

DC , g is not bounded on C ×B, we can find y0 ∈ DC such that

(x0, y0,+∞) ∈ Γg \ Γg.

By the curve selection Lemma there is a definable continuous curve γ : [0, a[→ Γg, with

γ(t) = (x(t), y(t), g(x(t), y(t))) and such that
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γ(0) = (x0, y0,∞) and γ(]0, a[) ⊂ Γg.

Assume that g(x, ·) is increasing for all x ∈ C (the other cases are similar). In this

case by Lemma 2.1.13, we can shrink ]0, a[ and we can find a box B in ]eC , bC [ (it is

not empty because eC < bC) and L > 0 such that for all y ∈ B, and for all t ∈]0, a[ we

have

g(x(t), y) 6 L.

But we have also for all y ∈ B, and for all t ∈]0, a[

g(x(t), y(t)) 6 g(x(t), y) 6 L.

And this contradicts the fact that

lim
t→0

g(x(t), y(t)) = +∞.

� Case 2: We assume that Z = f−1(0) 6= ∅. Take ε > 0, define the set A = {x ∈
B(x0, ε) ∩X : dim(Zx) = 1}. We have the following cases:

� Case.A: Assume that x0 ∈ A, take D a definable partition of B(x0, ε) ∩X com-

patible with A. Since f is not B(x0, ε) ∩ X-rectifiable with respect to y near x0,

we can find C ∈ D with x0 ∈ C and such that for any partition CC of C there is

C ′ ∈ CC (with x0 ∈ C
′
) such that for any box B ⊂ Ω there is no L > 0 such that

‖Dyf(x, y)‖ 6 L |f(x, y)|

for (x, y) ∈ C ′ ×B and x in some neighborhood of x0.

Here we discuss two subcases:

� Case.A.1: Suppose C ∩A = ∅. Then by Lemma 2.1.4 we can find a partition

CC of C such that for every C ′ ∈ CC there is a box BC′ in Ω2 such that (C ′ ×
BC′)∩Z = ∅, hence g is well-defined on C ′×BC′ . Then we may apply the same

argument as in the proof of case 1 by considering for every C ′ ∈ C the function

g : C ′ ×BC′ → R+

(x, y) 7→ ‖Dyf(x,y)‖
|f(x,y)| .

� Case.A.2: Suppose C ⊂ A. Then again by Lemma 2.1.4 we can find a partition

CC of C such that for every C ′ ∈ CC there is a box BC′ in Ω such that (C ′×BC′) ⊂
Z or (C ′ × BC′) ∩ Z = ∅. If (C ′ × BC′) ∩ Z = ∅, then we are again in the

situation of case.A.1. If (C ′ × BC′) ⊂ Z, this gives that f = 0 and Dyf = 0 on

C ′ ×BC′ and this is a contradiction because we can choose any L > 0 such that

‖Dyf(x, y)‖ 6 L |f(x, y)| for (x, y) ∈ C ′ × BC′ , and x in some neighborhood of

x0.

� Case.B: Assume that x0 /∈ A. Then we can separate x0 from A by some B(x0, ε
′)

and proceed as in the case.A.1.

• The case of m > 1 : Assume that the statement of the lemma is true for any positive

integer smaller than m. Fix I = I1 × ... × Im a box in Ω, with Ii =]ai, bi[ and denote

I ′ = I2 × ...× Im. Apply the induction hypothesis (the case of m− 1) to the function
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f : (X × I1)× I ′ → R
((x, y1), y′) 7→ f(x, (y1, y

′)).

Hence we can shrink I1, and find a neighborhood U of x0, such that f is (X ∩ U) × I1-

rectifiable with respect to y′, it means that there is L > 0 and a partition P of (X ∩U)× I1

(we can choose it in a way that πn+1
n (P) is a partition of X ∩ U) such that for any C ∈ P

there is a box BC ⊂ I ′ and we have

∀((x, y1), y′) ∈ C ×BC : ‖Dy′f(x, y)‖ 6 L |f(x, y)|.

So we can find a partition D of X ∩ U and definable maps φ1, ..., φkD : D → I1 for every

D ∈ D, such that every C ∈ P is either the graph of one of these maps or a band between

two graphs. Now take the set
∑

defined by∑
= tD∈D

⋃
i=1,...,kD

Γφi ⊂ (X ∩ U)× I1.

Since for all x ∈ X ∩ U we have dim(
∑

x) = 0 < 1 = dim(I1). By Lemma 2.1.4 it suffices

to consider the cells C of the form

C = DC×]aC , bC [,

where {DC}C∈P is a partition of X ∩ U and ]aC , bC [⊂ I1. Hence to complete the proof we

need to show that for such C ∈ P with x0 ∈ C, f is C-rectifiable with respect to y in some

neighborhood of x0. Now let’s apply the case of m = 1 to the function

f : (DC ×BC)×]aC , bC [→ R
((x, y′), y1) 7→ f(x, y).

We can find a neighborhood UC of x0 in X and we can shrink BC , so that f is (UC ∩DC)×
BC-rectifiable with respect to y1, that there is L′ > 0 and a partition PC of (UC∩DC)×BC
such that πn+m

n+1 (PC) is a partition of UC ∩DC and for every P ∈ PC there is a box IP ⊂ I1

and

∀(x, y′) ∈ P and ∀y1 ∈ IP we have ‖Dy1f(x, y)‖ 6 L′ |f(x, y)| .

Now by Lemma 2.1.4 it suffices to consider the elements P ∈ PC of the form P = MP ×
BP , where the collection {MP }P is a partition of UC ∩ DC and {BP }P are boxes in BC .

Therefore, finally, for any MP there is a box IP ×BP ⊂ I such that on this box we have

‖Dyf(x, y)‖ 6 (L+ L′) |f(x, y)|.

This finishes the proof of the lemma.
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Theorem 2.1.17. Let A be a definable subset of Rn such that dim(A) 6 n − 1 and take

p ∈ N∗. Then there are ε > 0, C > 0, and {v1, ..., vk} ⊂ Rn−1 such that for every x ∈ Rn

there is i ∈ {1, ..., k} such that πvi is (ε, C, p)-regular at x with respect to A.

Proof. By Theorem 2.1.3, we can find a cell decomposition C = {C1, ..., Ck} of Rn, and

ε > 0 such that for every i ∈ {1, ..., k} there is vi ∈ Rn−1 such that πvi is (ε, p)-weak regular

at every point x ∈ Ci with respect to A. Hence, for every i ∈ {1, ..., k} there are definable

functions

fi,l : Ci ×B(vi, ε)→ R∗

(x, v) 7→ fi,l(x, v),

such that each fi,l is Cp with respect to v and we have

Cε(x, vi) ∩A =
⊔
l

{x+ fi,l(x, v)(v, 1) : v ∈ B(vi, ε)}.

Now we will find a refinement of C, constants ε′ < ε and C > 0, and a (ε′, C, p)-regular

projections of Rn with respect to A. For this, it is enough to prove that for every Ci ∈ C the

maps fi,l are Ci-rectifiable with respect to v, it means that there is c > 0 and a definable

partition Ci of Ci such that for every D ∈ Ci there is a box BD ⊂ B(vi, ε) with

‖Dvfi,l‖
|fi,l|

< c on D ×BD.

Take Ci ∈ C. Then we have

• If Ci is of dimension 0, that is Ci = {x} is a point, then by continuity of
‖Dvfi,l‖
|fi,l| we can

find a closed ball B(vi, ε
′) ⊂ B(vi, ε) such that

‖Dvfi,l‖
|fi,l| is bounded by some c > 0 on this

ball. Hence the maps fi,l are Ci-rectifiable with respect to v.

• Assume that Ci is of dimension dim(Ci) > 0. We know that we have a natural definable

embedding (it is the inverse map of the stereographic projection, and it is semi-algebraic)

of Rn in Sn.

E : Rn → Sn.

We can replace Ci by E(Ci) and fi,l by the maps fi,l ◦ (E−1, IdB(vi,ε)). Indeed if the maps

fi,l ◦ (E−1, IdB(vi,ε)) are E(Ci)-rectifiable, then the maps fi,l are also Ci-rectifiable.

Take the closure Ci of Ci in Sn (it is a compact subset since Sn is compact). So we can

find a definable cover U = {U1, ..., Uk} of Ci such that for each j ∈ {1, ..., k} we have

Uj = Ci ∩B(xj , rj) for some xj ∈ Ci and rj > 0.
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Now take x ∈ ∂Ci = Ci \Ci, hence there is a jx ∈ {1, ..., k} such that x ∈ Ujx . By applying

Lemma 2.1.16 to the maps fi,l : (Ujx \ ∂Ci) × B(vi, ε) → R (here Ujx \ ∂Ci = X and

B(vi, ε) = Ω), we can find a neighborhood Ox of x in Ci such that fi,l are Ox∩Ci-rectifiable

with respect to v . Then by compactness of ∂Ci, we can choose a finite cover (Ox1 , ..., Oxm)

of an open neighborhood of ∂Ci in Ci such that fi,l are (
⋃
sOxs) ∩ Ci-rectifiable with

respect to v. Now since d(∂Ci, Ci \ (
⋃
sOxs)) > 0, we can find a compact subset K ⊂ Ci

with Ci\(
⋃
sOxs) ⊂ K, hence the functions

‖Dvfi,l‖
|fi,l| are bounded on Ci\(

⋃
sOxs), therefore

fi,l are Ci \ (
⋃
sOxs)-rectifiable with respect to v. Finally, since (

⋃
sOxs ∩Ci, Ci \

⋃
sOxs)

is a definable cover of Ci, we deduce that the functions fi,l are Ci-rectifiable with respect

to v.

2.2 Application: Existence of regular covers.

Fix D an o-minimal structure on (R,+, ·). Let U be an open definable relatively compact

subset of Rn. By a regular cover of U , we mean a finite cover (Ui) by open definable sets,

such that

(1) each Ui is homeomorphic to the open unit ball in Rn by a definable homeomorphism.

(2) there is a positive number C such that for all x in Rn we have

d(x,Rn \ U) ≤ C max
i
d(x,Rn \ Ui).

Example 2.2.1. Take U = {(x, y) ∈ R2 ; 0 < x < 1 and − 1 < y < 1}. U is a definable

set in any o-minimal structure on R. The definable cover (U1, U2) of U defined by

U1 = {(x, y) ∈ U : y > −1
2},

U2 = {(x, y) ∈ U : y < 1
2}.

is a regular cover. Indeed, take p = (x, y) ∈ U . Then we have

d(p,R2 \ U) < max(d(p,R2 \ U1), d(p,R2 \ U2)).

Now take the definable cover (U ′1, U
′
2) defined by

U ′1 = {(x, y) ∈ U : y < x2},
U ′2 = {(x, y) ∈ U : y > −x2}.

Then (U ′1, U
′
2) is not a regular cover. Assume that this is a regular cover, take a point

pa = (a, 0) ∈ U . Then we have

d(pa,R2 \ U) = a for a < 1
2 ,

d(pa,R2 \ U ′1) = d(pa,R2 \ U ′2) < a2.

Hence we have for a < 1
2

d(pa,R2 \ U)

max (d(pa,R2 \ U ′1), d(pa,R2 \ U ′2))
>

1

a
→ +∞ when a→ 0.

Hence this is a contradiction with the definition of a regular cover.
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Theorem 2.2.2. For any open relatively compact definable subset U of Rn there exists a

regular cover.

Proof. Take X = ∂U = U \ U . X is compact and definable of dimension n − 1. Take

Z = Sing1(X) the set of the points where X is not a C1-submanifold of Rn of dimension

n−1 near these points (i.e that Z = (Reg1(X))c). For any linear projection P : Rn → Rn−1

(i.e, a projection with respect to a vector in Rn), we define the discriminant ∆P by

∆P = P (Z) ∪ CV (P|Reg1(X)),

where CV (π|Reg1(X)) is the set of critical values of P on Reg1(X).

It is obvious that ∆P is definable subset of Rn−1, because P is a definable map and

CV (P|Reg1(X)) can be described by a first order formula. And we have also

P (U) = P (U) ∪∆P .

Take Λ = {π1, ..., πk} a set of (ε, 1)-weak regular projection with respect to X, and

v1, ..., vk ∈ Rn−1 such that πj = πvj . For x ∈ Rn we denote by Cjε(x) the cone

Cjε(x) = Cε(x, vj) = {x+ t(v, 1) : t ∈ R∗, v ∈ B(ε, vj)}.

Lemma 2.2.3. Take πj ∈ Λ, and define

R(πj) = {x ∈ U : πj is (ε, 1)-weak regular at x with respect to X}.

Then we have πj(R(πj))∩∆πj = ∅ and there is some C > 0 such that for all x ∈ R(πj) we

have

(3.1) d(x,X \ Cjε(x)) ≤ Cd
(
πj(x), πj(X \ Cjε(x))

)
≤ Cd(πj(x),∆πj ).

Proof. It is enough to assume that πj is the standard projection πj = π0 = π. If π(R(π))∩
∆π 6= ∅, then there is x′ ∈ π(Z) ∪ CV (π|Reg1(X)) such that x′ = π(x) and x ∈ R(π), but

since π is ε-weak regular at x, it follows that X ∩ π−1(π(x)) ⊂ (Reg1(X)). Hence the

contradiction. So π(R(π)) ∩∆π = ∅.
Since ∆π ⊂ π(X \ C0

ε (x)), we have d
(
π(x), π(X \ C0

ε (x))
)
≤ d(π(x),∆π), and to show the

first inequality it is enough to find C > 0 such that

d(x,X \ C0
ε (x)) ≤ Cd

(
π(x), π(X \ C0

ε (x))
)
.

But for any x′ /∈ C0
ε (x) we have

d(x, x′)

d(π(x), π(x′))
6 1 +

1

ε
.

Indeed, take x′ = x + t(v, 1) /∈ C0
ε (x), with t ∈ R∗ and ‖v‖ > ε. Then π(x′) = π(x) + tv.

Hence we have
d(x, x′)

d(π(x), π(x′))
=
| t | ‖(v, 1)‖
| t | ‖v‖

6 1 +
1

ε
.

Now for any x′ ∈ X \ Cε(x) we have

d(x, x′) 6 (1 +
1

ε
)d(π(x), π(x′)).
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But since this is for any x′ ∈ X \ Cε(x), by the definition of the infimum we deduce that

d(x,X \ Cε(x)) ≤ (1 +
1

ε
)d(π(x), π(X \ Cε(x))).

Remark 2.2.4. For the first inequality in (3.1), we don’t need x to be in R(πj).

For the proof of Theorem 2.2.2 we proceed by induction on n. Assume that Theo-

rem 2.2.2 is true in Rn−1. Fix j ∈ {1, ..., k}. Then by the induction assumption and by

Lemma 2.2.3 there is a Cj > 1 and a finite definable cover (Uj,i)i∈Ij of πj(U) \ ∆πj such

that for all x′ ∈ Rn−1 we have

d(x′,Rn−1 \ (πj(U) \∆πj )) ≤ Cj max
i
d(x′,Rn−1 \ (Uj,i))

and for all x ∈ R(πj) we have by Lemma 2.2.3

d(x,X \ Cjε(x)) ≤ Cjd(πj(x), πj(X \ Cjε(x))) ≤ Cjd(πj(x),∆πj ).

Now take a cell decomposition of Rn compatible with U , X, Z, CP ((πj)|X ), and πj(U)\
∆πj . Then for each i ∈ Ij there are definable functions

φ1 < φ2 < ... < φli : Uj,i → R,

such that X ∩π−1
j (Uj,i) is the disjoint union of graphs of these functions, and U ∩π−1

j (Uj,i)

is the disjoint union of the open sets bounded by the graphs of these functions. So for every

j ∈ {1, ..., k} and i ∈ Ij we have:

U ∩ π−1
j (Ui,j) =

⋃
m∈Mj,i

Uj,i,m,

where Uj,i,m are open definable subsets of U , given by

Uj,i,m = {(x′, xn) : x′ ∈ Uj,i and φm1(x′) < xn < φm2(x′) }, with Γφm1
⊂ X and

Γφm2
⊂ X.

Now take x ∈ U . Hence by the weak projection theorem there is a projection πj ∈ Λ

such that x ∈ R(πj). Let’s consider i ∈ Ij such that πj(x) ∈ Uj,i and

(3.2) d(πj(x),Rn−1 \ (πj(U) \∆πj )) ≤ Cjd(πj(x),Rn−1 \ (Uj,i)).

Since ∂(πj(U) \∆πj ) ⊂ ∆πj , we have

(3.3) d(πj(x),∆πj ) ≤ Cjd(πj(x),Rn−1 \ (Uj,i)).

Now take m ∈Mj,i such that x ∈ Uj,i,m. Then we claim that

(3.4) d(x,X) 6 (Cj)
2d(x,Rn \ Uj,i,m).

To prove (3.4) we discuss two cases (the first is obvious)

(1) d(x,Rn \ Uj,i,m) > d(x,X).
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(2) d(x,Rn \Uj,i,m) < d(x,X). In this case let V = ∂Uj,i,m ∩ π−1
j (∂Uj,i) (the vertical part of

∂Uj,i,m). We have then

d(x,Rn \ Uj,i,m) = d(x, V ),

because d(x,Rn \ Uj,i,m) = min{ d(x, V ), d(x, ∂Uj,i,m ∩X)}. Therefore by (3.1) and (3.3)

we have

d(x,X) 6 d(x,X \ Cjε(x))

6 Cjd(πj(x),∆πj )

6 C2
j d(πj(x),Rn−1 \ Uj,i)

6 C2
j d(x, V )

6 C2
j d(x,Rn \ Uj,i,m).

And this proves (3.4).

Finally, we have a finite cover (Uj,i,m)m∈Mj,i,i∈Ij ,j of U . Take

C = max
j
C2
j .

Hence for x ∈ U we have

d(x,Rn \ U) = d(x,X) 6 (Cj)
2d(x,Rn \ Uj,i,m) 6 C max

j,i,m
d(x,Rn \ Uj,i,m).

Comments 2.2.5. The existence of regular covers was essentially needed in [6] for the con-

struction of Sheaves on the subanalytic sites, and so Theorem 2.2.2 implies that the results

in [6] works also on definable sites for arbitrary o-minimal structures. Also this implies the

existence of Sobolev sheaves (see Chapter 3) proven by G.Lebeau [12] on any definable site.



Chapter 3

Sobolev sheaves on the definable

site

Sheaves of functional spaces on the subanalytic topology (in the sense of Grothendieck) are

important objects in algebraic analysis. We focus in this chapter on sheaves that are made

of Sobolev functions. for s ∈ R, the presheaf of C-vector spaces

U ⊂ Rn →W s,2(U) = {F|U : F ∈W s,2(Rn)},

is not always a sheaf for regularity reasons. This is related to the fact that if U ⊂ Rn is

open subanalytic with (non Lipschitz) singularity in ∂U , then the space W s,2(U) doesn’t

have good properties. The aim of this part is to find for s > 0 an optimal sheafification of

Sobolev spaces W s,2 on the definable site (in a fixed o-minimal structure), optimal in the

sense that for U ⊂ Rn the space W s,2(U) will be modified only if it is necessary.

In [12], G.Lebeau proved that for any s < 0, there is an object Fs in the derived category

of sheaves on the subanalytic topology of Rn such that for any open subanalytic Lipschitz

set U ⊂ Rn the complex Fs(U) is concentrated in degree 0 and equal to the classical Soblev

space W s,2(U). The proof is based on the results of Guillermou and P. Schapira in [6] and

the existence of good subanalytic covers in [22].

For s ∈ N, we construct a sheaf Fs of distributions on the definable topology such that

if U ⊂ R2 is a small open set then

Fs(U) = W s,2(U).

This sheaf is unique (thanks to existence L-regular decomposition in [10], [11], [23], and

[24]) and agrees with W s,2 on Lipschitz domains. The idea of the construction is based

on understanding the local obstructions for W s,2 to be a sheaf. Note that thanks to L-

regular decomposition (see [23]), for s ∈] − 1
2 ,

1
2 [ the presheaf U 7→ W s,2(U) is a sheaf.

The obstructions are present for s > 0 big enough to have embedding of W s,2 into at

least the space of continuous functions. In the 2 dimensional case, the construction is easy

and explicit because the Lipschitz structure of definable open subsets in R2 has an explicit

classification.

33
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3.1 Hilbert Sobolev spaces revisited.

Let n ∈ N, we denote by:

� S(Rn) the space of Schwartz functions (C∞-functions that go to zero (with all the

derivatives) at infinity faster than any polynomial).

� S ′(Rn) the topological dual of S(Rn).

And we have natural continuous injections

S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn).

We recall the Fourier Transform

u ∈ S(Rn) 7→ û ∈ S(Rn),

where

û(y) =
1

(2π)
n
2

∫
Rn

e−iy.xu(x)dx. (3.1.1)

By duality, the Fourier transform extends in a canonical way to S ′(Rn). Finally for s ∈ R
we recall the Sobolev space

W s,2(Rn) = {u ∈ S ′(Rn) : ‖u‖W s,2(Rn) =

√∫
Rn

(1 + |y|2)s |û(y)|2 dy < +∞},

with the natural dense inclusions (for s > 0)

D(Rn) ⊂ S(Rn) ⊂ L2(Rn) ⊂W s,2(Rn) ⊂ S ′(Rn).

An equivalent way to define W s,2(Rn) is :

• For k ∈ N

W k,2(Rn) = {f ∈ L2(Rn) : ∀ | α |6 k, ∂αf ∈ L2(Rn)},

where ∂αf is the distributional derivative of f for α ∈ Nn.

• For s ∈]k, k + 1[ for some k ∈ N, then W s,2 is the interpolation space

W s,2(Rn) = [W k,2(Rn),W k+1,2(Rn)]s−k.

• For s < 0, W s,2(Rn) is the topological dual

W s,2(Rn) := (W−s,2(Rn))′.

For open U ⊂ Rn and a closed F ⊂ Rn we define the spaces W s,2
F (Rn) to be the closed

subspace of distributions supported in F , with the induced norm.
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Take s > 0 and r = s− [s]. It’s classical that f ∈W s,2(Rn) if and only if ∂αf ∈ L2(Rn) for

all | α |6 [s] and (if r > 0)

∂αf(x)− ∂αf(y)

|x− y|
n
2

+r
∈ L2(Rn × Rn)

for all | α |= [s], and the norm of W s,2 is given by

‖f‖W s,2(Rn) =
∑
|α|6[s]

‖∂αf‖L2(Rn) + 1r>0

∑
|α|=[s]

‖∂
αf(x)− ∂αf(y)

|x− y|
n
2

+r
‖L2(Rn×Rn). (3.1.2)

For s ∈ R and U ⊂ Rn open, we define the space

W s,2(U) := {f ∈ D′(U) : ∃F ∈W s,2(Rn) such that F|U = f}. (3.1.3)

With the norm

‖ f ‖W s,2(U):= inf{‖ F ‖W s,2(Rn) : F|U = f}.

We have on W s,2(U) the quotient Hilbert structure induced by the natural isomorphism

between W s,2(U) and

W s,2(Rn)
/
W s,2

Rn\U (Rn) .

Since W s,2
Rn\U (Rn) is a closed subspace of the Hilbert space W s,2(Rn), it’s complemented by

the orthogonal and

W s,2(Rn) = W s,2
Rn\U (Rn)⊕ (W s,2

Rn\U (Rn))⊥.

This induces an extension operator T : W s,2(U) −→W s,2(Rn) given by

T (f) = Proj
(W s,2

Rn\U (Rn))⊥(F )

for any choice of F ∈ W s,2(Rn) such that F |U= f , where Proj
(W s,2

Rn\U (Rn))⊥ : W s,2(Rn)→

(W s,2
Rn\U (Rn))⊥ is the orthogonal projection.

The usual definition of Sobolev spaces: in our definition we follow [12]. Note that

the usual Sobolev spaces W s,2
? (see Lions and Magenes [13]) are defined as follows:

• If k ∈ N, then

W k,2
? (U) := {f ∈ L2(U) : ∂αf ∈ L2(U) ∀ | α |6 k}.

• If s ∈]k, k + 1[, then

W s,2
? (U) := [W k,2

? (U),W k+1,2
? (U)]s−k.

And we have

W s,2
? (U) = {f ∈ L2(U) : ∂αf ∈W s−k,2

? (U) ∀ | α |6 k}.
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• For s < 0, W s,2
? (U) is defined to be the topological dual space of W−s,2? (U).

Definition 3.1.1. An open set U ⊂ Rn is said to be Lipschitz if and only if for any q ∈ U \U
there are an orthogonal transformation φ : Rn → Rn with φ(q) = 0, a Lipschitz function

f : Rn−1 → R, and r > 0 such that

φ(U ∩B(q, r)) = {(y′, yn) ∈ B(0, r) : yn > f(y′)}.

Thanks to the Stein extension Theorem (with the functoriality of interpolations (see

Section 3.6)), for U ⊂ Rn Lipschitz bounded and s > 0 we have

W s,2(U) = W s,2
? (U). (3.1.4)

In fact the Stein extension Theorem gives more:

Theorem 3.1.2. Take U ⊂ Rn open Lipschitz bounded. Then there is a linear continuous

extension operator Ext : L2(U) 7→ L2(Rn) such that for k ∈ N the restriction of Ext to

W k,2
? (U) induces a linear continuous operator

Ext
Wk,2

? (U)
: W k,2

? (U) 7→W k,2(Rn).

Proposition 3.1.3. Let U ⊂ Rn be open bounded Lipschitz and s > 0. Let k = [s] and

r = s− [s]. Then f ∈W s,2(U) if and only if:

(1) ∀ |α| 6 k we have ∂αf ∈ L2(U).

(2) If r > 0 we have

∫ ∫
U×U

|∂αf(x)− ∂αf(y)|2

|x− y|n+2r dxdy < +∞. (3.1.5)

Proof. It’s a direct consequence of (3.1.2) and (3.1.4).

3.2 The definable site and the main problem.

Let XA(Rn) be the category of open bounded definable sets in Rn (the morphisms are the

inclusions, or the empty set), we endow XA(Rn) with the Grothendick topology (note that

this definitions work for more general categories):

S ⊂ XA(Rn) is a covering for U ∈ XA(Rn) if and only if S is finite and U =
⋃
O∈S O.

And we call it the definable site (associated to A).

Definition 3.2.1. A sheaf of C-vector spaces on the site XA(Rn) is a contravariant functor

F : XA(Rn)→ C-vector spaces,

such that for any U, V ∈ XA(Rn), the sequence

0→ F(U ∪ V )→ F(U)⊕F(V )→ F(U ∩ V )
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is exact.

This is equivalent to say that if S = {O1, ..., Ol} ⊂ XA(Rn) is a cover of O ∈ XA(Rn), and

fi ∈ F(Oi) such that

fi |Oi∩Oj= fj |Oi∩Oj for all i 6= j with Oi ∩Oj 6= ∅, (3.2.1)

then there is a unique f ∈ F(O) such that f |Oi= fi for i = 1, ..., l.

If in addition we have that for any U, V ∈ XA(Rn) the sequence

0→ F(U ∪ V )→ F(U)⊕F(V )→ F(U ∩ V )→ 0

is exact, then we say that F is an acyclic sheaf.

The following example was introduced by Kashiwara in [8] to prove the Riemann-Hilbert

correspondence:

Example 3.2.2. We denote by (Rn)an the site associated the o-minimal structure of glob-

ally subanalytic sets. We define the trace of distributions on relatively compact subanalytic

sets

T : (Rn)an → R-vector spaces,

such that for U ⊂ Rn we have

T (U) = {f ∈ D′(U) : ∃F ∈ D′(Rn) such that F|U = f}.

One can show that f ∈ T (U) if and only if there are C > 0, m ∈ N, and r ∈ N such that

for any φ ∈ C∞c (U) we have

|< f, φ >| 6 C
∑
|α|6m

sup
x∈U

(
|∂αφ(x)|
d(x, ∂U)r

)
.

Then T is an acyclic sheaf on the subanalytic site (Rn)an, that means for any bounded

subanalytic U1, U2 ⊂ Rn the sequence

0→ T (U1 ∪ U2)→ T (U1)⊕ T (U2)→ T (U1 ∩ U2)→ 0

is exact. Indeed take U1, U2 ⊂ Rn bounded subanalytic, and take f ∈ D′(U1 ∪ U2) such

that f|U1
∈ T (U1) and f|U2

∈ T (U2). So there are C1 > 0, C2 > 0, m1 ∈ N, m2 ∈ N, r1 ∈ N
and r2 ∈ N such that for any φ ∈ C∞c (Ui) we have

∣∣< f|Ui
, φ >

∣∣ 6 Ci ∑
|α|6mi

sup
x∈Ui

(
|∂αφ(x)|
d(x, ∂Ui)ri

)
.

By the  Lojasiewicz’s inequality there are C > 0 and m ∈ N such that

d(x, U1) + d(x, U2) > C(d(x, ∂(U1 ∪ U2)))m for all x ∈ U1 ∪ U2.

Take (ϕ1, ϕ2) a partition of unity associated to (U1, U2). Hence, for φ ∈ C∞c (U1 ∪ U2) we

have
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|< f, φ >| = |< f,ϕ1φ+ ϕ2φ >|
6

∣∣< f|U1
, ϕ1φ >

∣∣+
∣∣< f|U2

, ϕ2φ >
∣∣

6 C1

∑
|α|6m1

sup
x∈U1

(
|∂αϕ1φ(x)|
d(x, ∂U1)r1

)
+ C2

∑
|α|6m2

sup
x∈U2

(
|∂αϕ2φ(x)|
d(x, ∂U2)r2

)

6
max(C1, C2)

C

∑
|α|6max(m1,m2)

sup
x∈U1∪U2

(
|∂αφ(x)|

d(x, ∂(U1 ∪ U2))mmin(r1,r2)

)
.

Therefore, f ∈ T (U1 ∪ U2).

�

Problem: For a given s > 0, is there a sheaf Fs on the definable site XA(Rn) such

that for any U ∈ XA(Rn) with Lipschitz boundary, we have

Fs(U) = W s,2(U) and Hj(U,Fs) = 0 for j > 0.

Recall that for any contravariant functor (a presheaf) F : XA(Rn) −→ C-vector spaces,

and x ∈ Rn we denote by Fx the germ at x of sections

Fx = lim
x∈U

F(U) = tx∈UF(U) /v ,

such that for two sections f1 ∈ F(U1) and f2 ∈ F(U2) with x ∈ U1 ∩ U2, we have f1 v f2

if and only if there is a neighborhood V ⊂ U1 ∩ U2 of x such that f1 |V = f2 |V . There is a

canonical sheaf F+ associated to F defined by

U ∈ XA(Rn) 7→ F+(U) ⊂ F (U,tx∈UFx),

with f ∈ F+(U) if for any x ∈ U , f(x) ∈ Fx and there is a neighborhood V ⊂ U of x and

φ ∈ F(V ) such that for every y ∈ V , f(y) is a representative of φ in Fy.

For s > 0, let’s consider W s,2
+ the sheaf associated to W s,2 on the site XA(Rn). Let

U ∈ XA(Rn) be Lipschitz. Then one can prove that there is no way to identify W s,2
+ (U) with

W s,2(U), which make the sheafification method not good for our purpose. We want to get a

sheaf out of Sobolev spaces but keep the best of it, because Sobolev spaces behave perfectly

on Lipschitz domains. For s < 0, a sheafification in the derived category D+(XRan(Rn))

of sheaves on the subanalytic site was given by G.Lebeau [12], but since the subanalytic

argument involved in the proof was only the existence of regular covers, then this means

that Theorem 2.2.2 implies directly a generalization of this to any definable site on Rn:

Theorem 3.2.3. Take A an o-minimal structure on (R,+, ·) and s < 0. Then there is

an object Fs ∈ D+(XA(Rn)) such that if U ⊂ Rn is a bounded open definable set with a

Lipschitz boundary, the complex Fs(U) is concentrated in degree 0 and equal to W s,2(U).
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3.3 The spaces W s,2 for s ∈]− 1
2 ,

1
2 [.

Using the results of Parusiński in [22], it was noticed in [12] that for s ∈]− 1
2 ,

1
2 [ the presheaf

U 7→ W s,2(U) is an acyclic sheaf on the subanalytic topology. We explain here by details

why this is true in the o-minimal case. Fix A an o-minimal structure on Rn. Let’s first recall

a classical result on fractional Sobolev spaces (see Theorem11.2 in [13]). Take s ∈]0, 1
2 [ and

U ⊂ Rn an open Lipschitz domain. Then there is C > 0 such that for any f ∈W s,2(U) we

have

‖ f(x)

d(x, U)s
‖L2(U) 6 C‖f‖W s,2(U). (3.3.1)

Lemma 3.3.1. Fix s ∈]− 1
2 ,

1
2 [ and let U ∈ XA(Rn) be Lipschitz. Then the linear operator

1U : W s,2(Rn) −→W s,2(Rn)

f 7→ 1Uf

is well defined.

Proof. The case of s = 0 is obvious. First assume 0 < s < 1
2 . Let f ∈ W s,2(Rn) and

U ∈ XA(Rn) be Lipschitz. It is clear that 1Uf ∈ L2(Rn), so by (3.1.2) we need to prove

that

L =

∫ ∫
Rn×Rn

|1Uf(x)− 1Uf(y)|2

|x− y|n+2s dxdy < +∞. (3.3.2)

But

L =

∫ ∫
U×U

|f(x)− f(y)|2

|x− y|n+2s dxdy + 2

∫
U
|f(x)|2

(∫
Uc

1

|x− y|n+2sdy

)
dx.

Since f ∈W s,2(Rn), by (3.3.1) it’s enough to prove that

d(x, U)−2s .
∫
U

1

|x− y|n+2sdy . d(x, U)−2s, (3.3.3)

where U ∈ XA(Rn) is Lipschitz. Since ∂U is bounded we can assume that

U = {(y′, yn) ∈ Rn : yn > 0}.

And a simple computation shows that

d(x, U)−2s =
1

|xn|2s
.
∫
U

1

|x− y|n+2sdy .
1

|xn|2s
= d(x, U)−2s.

Now take s ∈]− 1
2 , 0[. For T ∈W s,2(Rn) we have

1UT : W−s,2(Rn) −→ C
f 7→< 1UT, f >:=< T, 1Uf >.

By the case of s ∈]0, 1
2 [, 1UT is well defined and in W−s,2(Rn).

Denote A(Rn) the algebra generated by the characteristic functions of open bounded

definable sets in Rn, that is

A(Rn) = {
∑
i∈I

mi1Ui : I finite, mi ∈ Z, and Ui ∈ XA(Rn)}.

Then we have:
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Lemma 3.3.2. The algebra A(Rn) is generated by the characteristic functions of Lipschitz

definable domains.

Proof. Take U ⊂ Rn. Thanks to the existence of L-regular decomposition, it’s enough to

assume that U is L-regular with respect to the standard coordinates of Rn.

� Case dim(U) = n: So take U ′ = π(U) ⊂ Rn−1 L-regular. Assume that there are Lipschitz

open definable O1, O2, ..., ON ∈ XA(Rn) such that

1U ′ =
∑
i

mi1Oi for some mi ∈ Z.

By definition of L-regular cells, we have that

U = Γ(U ′, f, g) = {(x′, xn) ∈ U ′ × R : f(x′) < xn < g(x′)},

where f < g : U ′ −→ R are Lipschitz definable functions with extensions f 6 g : Rn−1 −→
R. For each i ∈ {1, ..., N} it’s clear that

1Γ(Oi,f,g,) = 1Γ(Oi,f−1,g) + 1Γ(Oi,f,g+1) − 1Γ(Oi,f−1,g+1).

Hence

1U =
∑
i

mi1Γ(Oi,f−1,g) +
∑
i

mi1Γ(Oi,f,g+1) +
∑
i

(−)mi1Γ(Oi,f−1,g+1).

And we have bi-Lipschitz maps

ϕ−i : Γ(Oi, f − 1, g) −→ Oi×]0, 1[

x = (x′, xn) 7→ ϕ−i (x) = (x′, xn+1−f(x′)
g(x′)−f(x′)+1),

ϕ+
i : Γ(Oi, f, g + 1) −→ B(0, 1)×]0, 1[

x = (x′, xn) 7→ ϕ+
i (x) = (x′, xn−f(x′)

g(x′)−f(x′)−1),

ϕi : Γ(Oi, f + 1, g + 1) −→ B(0, 1)×]0, 1[

x = (x′, xn) 7→ ϕi(x) = (φi(x
′), xn+1−f(x′)

g(x′)−f(x′)+2).

Hence Γ(Oi, f + 1, g), Γ(Oi, f, g + 1) and Γ(Oi, f + 1, g + 1) are Lipschitz domains.

� Case dim(U) = l < n: In this case there are l-dimensional L-regular Ul ⊂ Rl and a

definable Lipschitz map φ = (φ1, ..., φn−l) : Rl −→ Rn−l such that

U = Γ(Ul, φ) = {(x, φ(x)) : x ∈ Ul}.

For each I ⊂ {1, ..., n− l}, define UI ∈ XA(Rn) as follows

UI = {(x, y) ∈ Ul×Rl : φj(x)−1 < yj < φj(x)+1 ∀j ∈ {1, ..., n−l} and yi 6= φi(x) for i ∈ I}.

UI is a disjoint union of open Lipschitz definable sets, and we have

1U =
∑
I

(−1)|I|1UI
.
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Proposition 3.3.3. For s ∈]− 1
2 ,

1
2 [, the presheaf W s,2 is an acyclic sheaf on the definable

site XA(Rn), that is for any U, V ∈ XA(Rn) the sequence

0→W s,2(U ∪ V )→W s,2(U)⊕W s,2(V )→W s,2(U ∩ V )→ 0

is exact.

Proof. By the definition of W s,2 we have the surjectivity of the map W s,2(U ∩ V ) → 0.

Take (f, g) ∈W s,2(U)⊕W s,2(V ) such that f|U∩V = g|U∩V . Take (f̂ , ĝ) ∈ (W s,2(Rn))2 such

that

f̂|U = f and ĝ|V = g.

By Lemma 3.3.1 and Lemma 3.3.2 we have h = 1U f̂ + 1V ĝ − 1U∩V f̂ ∈ W s,2(Rn). Then

h|U∪V ∈W s,2(U ∪ V ), (h|U∪V )|U = f , and (h|U∪V )|V = g.

3.4 Construction of the sheaf Fk on R2 for k ∈ N.

Given two definable C1-curves γ1, γ2 : [0, a[−→ R2, and r > 0 such that γ1(0) = γ2(0) = p0.

We denote by R(r, γ1, γ2) the open definable subset (see Figure 3.1)

R(r, γ1, γ2) = {P ∈ R2 : P ∈ B(p0, r) and P is between γ1 and γ2}.

Formally

P ∈ R(r, γ1, γ2) if and only if

Angl(γ1 ∩ C(p0, ‖P‖),−→e1(1, 0)) < Angl(p0P ,
−→e1(1, 0)) < Angl(γ2 ∩ C(p0, ‖P‖),−→e1(1, 0))

Here,

C(p0, ‖P‖) = {x ∈ R2 : ‖x− p0‖ = ‖P‖}.

If we write γ1 and γ2 by the parametrisations (and assume that p0 = 0, which is always

possible up to a translation)

γ1(t) = teiθ1(t) and γ2(t) = teiθ2(t) with t ∈ [0, r[ and 0 < θ1(t)− θ2(t) < 2π.

Then

R(r, γ1, γ2) = {teiθ : t ∈]0, r[ and θ1(t) < θ < θ2(t)}.

Remark 3.4.1. We can always choose r small enough such that R(r, γ1, γ2) is connected

and the circle C(p0, r
′) is transverse to γ1 and γ2 at the intersection points (that consists

of only two points).
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Figure 3.1: The domain R(r, γ1, γ2).

3.4.1 The local nature of open definable sets in R2.

Let U be a bounded connected open definable subset of R2. By choosing a cell decomposition

of R2 compatible with U and ∂U , we can prove that for any p0 ∈ ∂U there is r > 0 such

that we have one of the following cases (see Figure 3.2):

(C1): Punctured disk. Br(p0) ∩ U = Br(p0) \ {p0}.

(C2): Sector. There exist two definable C1-curves γ1, γ2 : [0, a[−→ R2 such that γ1(0) =

γ2(0) = p0, Angl(γ′1(0), γ′2(0)) 6= 0, 2π, and

Br(p0) ∩ U = R(r, γ1, γ2).

(C3): Cusp. There exist two definable C1-curves γ1, γ2 : [0, a[−→ R2 such that γ1(0) =

γ2(0) = p0, Angl(γ′1(0), γ′2(0)) = 0, and

Br(p0) ∩ U = R(r, γ1, γ2).

(C4): Cusp complement. There exist two definable C1-curves γ1, γ2 : [0, a[−→ R2 such

that γ1(0) = γ2(0) = p0, Angl(γ′1(0), γ′2(0)) = 2π, and

Br(p0) ∩ U = R(r, γ1, γ2).

(C5): Arc complement. There exist a definable C1-curve γ : [0, a[−→ R2 such that

γ(0) = p0 and

Br(p0) ∩ U = Br(p0) \ Im(γ).

(C6) Br(p0) ∩ U is a disjoint union of copies of open sets like C2, C3, and C4.

3.4.2 Local description (or definition) of the sheaf Fk.

Lemma 3.4.2. Let U , V be two Lipschitz definable bounded open subsets of R2 such that

U ∪ V and U ∩ V are Lipschitz. Then for any s ∈ R+, the following sequence of Hilbert

spaces

0→W s,2(U ∪ V )→W s,2(U)⊕W s,2(V )→W s,2(U ∩ V )→ 0
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is exact.

Proof. See [12] for the proof (or see Section 3.6 for a categorical proof).

Remark 3.4.3. For s ∈ N, for the statement of Lemma 3.4.2 we don’t need U ∩ V to be

Lipschitz.

Proof. Take s = k ∈ N. Then by (3.1.4), for Ω = U ∪ V ⊂ Rn we have

W k,2(Ω) = {f ∈ L2(Ω) : ∀α ∈ Nn : |α| 6 k =⇒ ∂αf ∈ L2(Ω) },

Where ∂αf is the distributional derivative of f . The Hilbert structure of W k,2(Ω) is given

by

‖f‖2Wk,2(Ω) =
∑
|α|6k

‖∂αf‖2L2(Ω).

Now let (f, g) ∈W k,2(U)⊕W k,2(V ) such that f |U∩V = g |U∩V . So there is H ∈ L2(U ∪V )

such that H |U= f ∈ W k,2(U) and H |V = g ∈ W k,2(V ). We want to show that for any

α ∈ Nn such that |α| 6 k there is hα ∈ L2(U ∪V ) such that ∂αH = hα (in the distributional

sense). Take (ϕU , ϕV ) a partition of unity associated to (U, V ). For any φ ∈ C∞c (U ∪ V )

we have

< ∂αH,φ > = < ∂αH,ϕUφ > + < ∂αH,ϕV φ >

= (−1)|α|
∫
U
H∂α(ϕUφ) + (−1)|α|

∫
V
H∂α(ϕV φ)

= (−1)|α|
∫
U
f∂α(ϕUφ) + (−1)|α|

∫
V
g∂α(ϕV φ)

= (−1)|α|
∫
U
∂αf(ϕUφ) + (−1)|α|

∫
V
∂αg(ϕV φ)

= (−1)|α|
∫
U∪V

(ϕU∂
αf + ϕV ∂

αg)φ

= (−1)|α|
∫
U∪V

hαφ.

Here hα := ϕU∂
αf + ϕV ∂

αg ∈ L2(U ∪ V ), and that completes the proof.

From now on we consider k ∈ N. Let U be a connected open definable bounded subset

of R2. We define the C-vector space F̂k(U) in the following special cases:

(C1) If U = Br(p0) \ {p0}. We can assume p0 = (0, 0) and r = 1. In this case we can

decompose U = U1 ∪ U2, where

U1 = {(x, y) ∈ U : y > x or y < −x} and U2 = {(x, y) ∈ U : y > −x or y < x}.

We have the sequence

0 W k,2(U) W k,2(U1)⊕W k,2(U2) W k,2(U1 ∩ U2)
d0 d1
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And it is natural to choose F̂k(U) := Ker(d1).

It follows from Lemma 3.4.2 that

F̂k(U) = {f ∈ L2(U) : f |L∈W k,2(L) for any L Lipschitz in U} = W k,2
? (U).

But we have a classical result on Sobolev spaces:

Fact: Take Ω ⊂ Rn open and W ⊂ Ω such that Hn−1(W ) = 0, where Hn−1 is the

(n− 1)-Hausdorff measure on Rn. Then we have

W k,2
? (Ω \W ) = W k,2

? (Ω).

That gives

W k,2
? (U) = W k,2

? (Br(p0)) = W k,2(Br(p0)).

So finally this means that we can take

F̂k(U) = W k,2(U).

(C2) If U is connected with Lipschitz boundary, then we define F̂k(U) := W k,2(U).

(C3) If U is a cusp, means that there are r > 0 and two definable C1-curves γ1, γ2 :

[0, a[−→ R2 such that γ1(0) = γ2(0), Angl(γ′1(0), γ′2(0)) = 0, and

U = R(r, γ1, γ2).

Then we define: F̂k(U) := W k,2(U).

(C4) If U is a complement of a cusp, means that there are r > 0 and two definable C1-

curves γ1, γ2 : [0, a[−→ R2 such that γ1(0) = γ2(0) = p0, Angl(γ′1(0), γ′2(0)) = 2π,

and

U = R(r, γ1, γ2).

Take γ3, γ4 : [0, a[−→ R2 such that γ3(0) = γ4(0) = p0, Angl(γ′1(0), γ′3(0)) > 0, and

Angl(γ′4(0), γ′2(0)) > 0.

In this case the sequence

0→W k,2(U)→W k,2(R(r, γ1, γ4))⊕W k,2(R(r, γ3, γ2))→W k,2(R(r, γ3, γ4))→ 0

is not exact in general.

Example 3.4.4. Assume that k > 2, then we have the continuous embeddingW k,2(R2) ↪→
C1(R2). Take U, V ∈ XA(R2) defined by

U = (]− 1, 1[×]− 1, 0[) ∪ (]− 1, 0[×]− 1, 1[),

and
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V = (]− 1, 0[×]− 1, 1[) ∪ {(x, y) : 0 6 x < 1 and xk+1 < y < 1}.

Define F ∈ L2(U ∪ V ) by F |U= 0, F (x, y) = xk+1 for x ∈ [0, 1[ and xk+1 < y < 1.

It’s clear that F |U∈ W k,2(U) and F |V ∈ W k,2(V ) but F /∈ W k,2(U ∪ V ), because if

F ∈W k,2(U ∪ V ) then there will be a C1 extension F̂ of F to R2, but this can not be

true because

lim
x→0

F̂ (x, xk+1)− F̂ (x, 0)

xk+1 − 0
= 1.

�

Question 3. What happens in this case if we replace k by s ∈ [1
2 , 2] ? is the sequence

0→W s,2(U)→W s,2(R(r, γ1, γ4))⊕W s,2(R(r, γ3, γ2))→W s,2(R(r, γ3, γ4))→ 0

exact?

Now we define F̂k(U = R(r, γ1, γ2)) to be the kernal of the map

J : W k,2(R(r, γ1, γ4))⊕W k,2(R(r, γ3, γ2))→W k,2(R(r, γ3, γ4)).

We use the notation

F̂k(U) = Ker(J) := K(γ3, γ4).

We need to prove that K(γ3, γ4) doesn’t depend on γ3 and γ4, but only on U . Take

α, β : [0, a[−→ R2 two definable curves that satisfy the same conditions as γ3 and γ4.

Let’s prove that

K(γ3, γ4) = K(α, β).

We can identify K(γ3, γ4) and K(α, β) to the spaces

K(γ3, γ4) = {f ∈ D′(U) : f|R(r,γ1,γ4) ∈W k,2(R(r, γ1, γ4)) and f|R(r,γ3,γ2) ∈
W k,2(R(r, γ3, γ2))}

K(α, β) = {f ∈ D′(U) : f|R(r,γ1,β) ∈W k,2(R(r, γ1, β)) and f|R(r,α,γ2) ∈
W k,2(R(r, α, γ2))}.

We can distinguish four possible cases:

case1: Im(α) ⊂ R(r, γ3, γ4) and Im(β) ⊂ R(r, γ3, γ4).

case2: Im(α) ⊂ R(r, γ3, γ4) and Im(β) ⊂ R(r, γ4, γ2).

case3: Im(α) ⊂ R(r, γ1, γ3) and Im(β) ⊂ R(r, γ3, γ4).

case4: Im(α) ⊂ R(r, γ1, γ3) and Im(β) ⊂ R(r, γ1, γ3).
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The first case is obvious, because in this case we have R(r, γ1, β) ⊂ R(r, γ1, γ4) and

R(r, α, γ2) ⊂ R(r, γ3, γ2). The cases 3 and 4 can be proven using the same computation

as case2.

Proof in case2: We will prove that K(γ3, γ4) ⊂ K(α, β) (the other inclusion follows

from the other cases). Take f ∈ K(γ3, γ4), since in this case R(r, α, γ2) ⊂ R(r, γ3, γ2),

we have f|R(r,α,γ2) ∈W k,2(R(r, α, γ2)). Now let’s prove that

f|R(r,γ1,β) ∈W k,2(R(r, γ1, β)).

Take c : [0, a[−→ R2 a definable curve such that c(0) = p0, Angl(γ′1(0), c′(0)) >

0, Angl(c′(0), γ′2(0)) > 0, Angl(β′(0), c′(0)) > 0, and Im(c) ⊂ R(r, β, γ2). We can

see that f|R(r,γ1,γ4) ∈ W k,2(R(r, γ1, γ4)) and f|R(r,γ3,c) ∈ W k,2(R(r, γ3, c)) (note that

R(r, γ3, c) ⊂ R(r, γ3, γ2)). Now by Lemma3.4.2 the short sequence

0→W k,2(R(r, γ1, c))→W k,2(R(r, γ1, γ4))⊕W k,2(R(r, γ3, c))→W k,2(R(r, γ3, γ4))

is exact.

Hence f|R(r,γ1,c) ∈W k,2(R(r, γ1, c)), therefore f|R(r,γ1,β) ∈W k,2(R(r, γ1, β)).

�

(C5) If there exists a definable C1-curve γ : [0, a[−→ R2 such that γ(0) = p0 and

U = Br(p0) \ Im(γ).

Take γ1, γ2 : [0, a[−→ R2 two C1 definable curves such that Angl(γ′1(0), γ′2(0)) 6= 2π.

By the Sobolev embedding and continuity reasons we can find an example such that

the short sequence

0→W k,2(U)→W k,2(R(r, γ, γ2))⊕W k,2(R(r, γ1, γ))→W k,2(R(r, γ1, γ2))

is not exact.

Example 3.4.5. Assume that k > 1. So we have an embedding W k,2(R2) ↪→ C0(R2).

Take U, V ∈ XA(R2) defined by

U = (]− 1, 1[×]− 1, 0[) ∪ (]− 1, 0[×]− 1, 1[),

and

V = (]− 1, 0[×]− 1, 1[) ∪ (]− 1, 1[×]0, 1[).

Define F ∈ L2(U ∪ V ) by F |U= 0 and F (x, y) = e−
1
x2 for 0 < x < 1 and 0 < y < 1.

It’s obvious that F |U∈ W k,2(U) and F |V ∈ W k,2(V ) but F /∈ W k,2(U ∪ V ), because

it can not be extended to a continuous function on R2.
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�

Question 4. What happens in this case if we replace k by s ∈ [1
2 , 1] ? is the sequence

0→W s,2(U)→W s,2(R(r, γ, γ2))⊕W s,2(R(r, γ1, γ))→W s,2(R(r, γ1, γ2))

exact?

So this motivate us to define F̂k(U) to be the kernal of the map

J : W k,2(R(r, γ, γ2))⊕W k,2(R(r, γ1, γ))→W k,2(R(r, γ1, γ2)).

That is

F̂k(U) = Ker(J) = K(γ1, γ2).

Applying the same technics we did with the previous case, we can show that K(γ1, γ2)

doesn’t depend by γ1 and γ2.

Remark 3.4.6. Note that this is a special case of the previous case.

(C6) If U is like in the case (C6). Then we take F̂k(U) to be direct sum of F̂k of the

connected components of U ∩Br(p0).

3.4.3 The global definition of Fk on the site XA(R2) .

Take k ∈ N. For every U ∈ XA(R2), we define Fk(U) by

Fk(U) := {f ∈W k,2
loc (U) : for each x ∈ ∂U, ∃r > 0 such that B(x, r) ∩ U ∈

{C1, ..., C6} and f |B(x,r)∩U∈ F̂k(B(x, r) ∩ U) }.

Claim: Fk is a sheaf on the site XA(R2).

Proof. We need to prove that for U ∈ XA(R2) and V ∈ XA(R2), the sequence

0→ Fk(U ∪ V )→ Fk(U)⊕Fk(V )→ Fk(U ∩ V )

is exact. It is enough to prove that if f ∈ W k,2
loc (U ∪ V ) (or even D′(U ∪ V )) such

that f |U∈ Fk(U) and f |V ∈ Fk(V ), then one has f ∈ Fk(U ∪ V ). It is also enough to

assume that f is supported at a small neighborhood of a given point x ∈ U ∪ V (if (φi) is

a partition of unity such that
∑

i φi = 1 near U ∪ V , then clearly f =
∑

i φif), and more

precisely of a given singular point x ∈ ∂U∩∂V such that ∂U and ∂V has different germs at x.

So take x ∈ ∂U ∩ ∂V such that (∂U, x) 6= (∂V, x) (and also no inclusion between the

two germs).
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� Case(A): Assume here that none of U , V , and U ∪ V are like the case C1.

Step1: we assume that U , V , and U ∪ V are locally connected near x.

There is r > 0 such that B(x, r) ∩ U , B(x, r) ∩ V , B(x, r) ∩ (U ∪ V ), B(x, r) ∩ (U ∩ V ) ∈
{C2, ..., C6}, hence there are definable curves γi : [0, a[−→ R2 (i = 1, ..., 4) such that

γi(0) = x and

U ∩B(x, r) = R(r, γ1, γ2), (U ∩ V ) ∩B(x, r) = R(r, γ2, γ3), V ∩B(x, r) = R(r, γ3, γ4), and

(U ∪ V ) ∩B(x, r) = R(r, γ1, γ4).

By the definition of Fk and assuming that f is supported in (U ∪ V )∩B(x, r), it’s enough

to prove that f |(U∪V )∩B(x,r)∈ F̂k((U ∪ V ) ∩ B(x, r)) = F̂k(R(r, γ1, γ4)) knowing that

f |U∩B(x,r)∈ F̂k(U ∩ B(x, r)) and f |V ∩B(x,r)∈ F̂k(V ∩ B(x, r)). We will discuss several

cases for this:

� case(1) Angl(γ′1(0), γ′4(0)) = 0 : in this case everything is a cusp near x. So

we can find U ′ and V ′ Lipschitz such that U ′ ∪ V ′ is Lipschitz, U ∩ B(r, x) ⊂ U ′,

V ∩B(r, x) ⊂ V ′, and U ′ ∩ V ′ = (U ∩ V ) ∩B(r, x). In this case we have

F̂k((U ∪ V ) ∩B(x, r)) = W k,2((U ∪ V ) ∩B(x, r))

F̂k(U ∩B(x, r)) = W k,2(U ∩B(x, r))

F̂k(V ∩B(x, r)) = W k,2(V ∩B(x, r))

Take fU ′ ∈ W k,2(U ′) an extension of f |U∩B(x,r) and fV ′ ∈ W k,2(V ′) an extension

of f |V ∩B(x,r), and define F ∈ D′(U ′ ∪ V ′) by gluing fU ′ and fV ′ . By Lemma 3.4.2

we have that F ∈ W k,2(U ′ ∪ V ′) and since F |(U∪V )∩B(x,r)= f |(U∪V )∩B(x,r), f ∈
W k,2((U ∪ V ) ∩B(x, r)) = F̂k((U ∪ V ) ∩B(x, r)).

� case(2) Angl(γ′1(0), γ′4(0)) 6= 0, 2π : In this case either U is Lipschitz or V is

Lipschitz. If both are Lipschitz then the prove follow from Lemma 3.4.2. The case if

there’s one not Lipschitz, let’s assume it’s U . In this case we can find U ′ Lipschitz such

that U ′ ∪ V is Lipschitz, U ∩ B(r, x) ⊂ U ′, and U ′ ∩ V = (U ∩ V ) ∩ B(r, x). Same as

the previous case we have

F̂k((U ∪ V ) ∩B(x, r)) = W k,2((U ∪ V ) ∩B(x, r))

F̂k(U ∩B(x, r)) = W k,2(U ∩B(x, r))

F̂k(V ∩B(x, r)) = W k,2(V ∩B(x, r))

Take fU ′ ∈ W k,2(U ′) an extension of f |U∩B(x,r), and define F ∈ D′(U ′ ∪ V ) by

gluing fU ′ and f |V . By Lemma 3.4.2 we have that F ∈ W k,2(U ′ ∪ V ) and since

F |(U∪V )∩B(x,r)= f |(U∪V )∩B(x,r), f ∈W k,2((U ∪V )∩B(x, r)) = F̂k((U ∪V )∩B(x, r)).

� case(3) Angl(γ′1(0), γ′4(0)) = 2π :

� Subcase3.1: If U∩B(x, r) and V ∩B(x, r) are lipschitz then we have by definition

that

F̂k((U ∪ V ) ∩B(x, r)) = K(γ2, γ3)

And this give that f |(U∪V )∩B(x,r)∈ F̂k((U ∪ V ) ∩B(x, r)).
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� Subcase3.2: if Angl(γ′1(0), γ′3(0)) = 2π and Angl(γ′2(0), γ′4(0)) = 2π, then in

this case we can find α and β in (U ∩V )∩B(x, r) with a starting point x, such that

F̂k((U ∪ V ) ∩B(x, r)) = K(α, β)

And since f |R(r,γ1,β)∈W k,2(R(r, γ1, β)) and f |R(r,α,γ4)∈W k,2(R(r, α, γ4)), we have

f |(U∪V )∩B(x,r)∈ F̂k((U ∪ V ) ∩B(x, r)).

� Subcase3.3: If Angl(γ′1(0), γ′3(0)) = 0 and Angl(γ′2(0), γ′4(0)) = 2π, then in this

case we can find α, β : [0, a[−→ R2 such that Im(β), Im(α) ⊂ V ∩B(x, r) and

F̂k((U ∪ V ) ∩B(x, r)) = K(α, β)

we have that f |R(r,α,γ4)∈W k,2(R(r, α, γ4)), and by applying case (2) onR(r, γ1, γ3),

R(r, γ2, β), we deduce that also f |R(r,γ1,β)∈ W k,2(R(r, γ1, β)), hence we have that

f |(U∪V )∩B(x,r)∈ F̂k((U ∪ V ) ∩B(x, r)).

� Subcase3.4: If Angl(γ′1(0), γ′3(0)) = 2π and Angl(γ′2(0), γ′4(0)) = 0, then it’s the

symmetry statement of subcase3.

Remark 3.4.7. Note that the case where γ1(t) = γ4(t) is included in the case(3).

Step2: We don’t assume here the local connectivity of U , V , and U ∪ V .

In this case there’s a finite number of definable curves ( with beginning point x ) γ1, λ1..., γm, λm :

[0, a[−→ R2, α1, β1..., αl, βl : [0, a[−→ R2 such that

B(x, r) ∩ U = tiR(r, γi, λi) and B(x, r) ∩ V = tiR(r, αi, βi).

Take f ∈ D′((U ∪ V ) ∩B(x, r)) such that f |U∩B(x,r)∈ F̂k((U) ∩B(x, r)) and f |V ∩B(x,r)∈
F̂k((V ) ∩B(x, r)), clearly this implies that

f |R(r,γi,λi)∈ F̂k(R(r, γi, λi)) and f |R(r,αj ,βj)∈ F̂k(R(r, αj , βj)) for all i and j.

We want to prove that f |(U∪V )∩B(x,r)∈ F̂k((U ∪ V ) ∩ B(x, r)). By the local definition

of F̂k, it’s enough to prove that f |C∈ F̂k(C) for every connected component C of

(U ∪ V ) ∩ B(x, r). So take C ′ a connected component of C, we can reorder the curves

γ1, λ1..., γm, λm, α1, β1..., αl, βl to find a definable curves c1, ..., cn such that

C ′ = ∪iR(r, ci, ci+1), f |R(r,ci,ci+1)∈ F̂k(R(r, ci, ci+1)), and

R(r, ci, ci+1) ∩R(r, ci+2, ci+3) 6= ∅ for any i ∈ {1, ..., n− 3}.

Using induction and Step1 we deduce that f |C′∈ F̂k(C ′).

� Case(B): Let’s be out of the assumption of Case(A) .Since we assumed that the germs

(∂U, x) and (∂V, x) are not comparable, the only non trivial case is when U ,V ∈ {C2, ..., C6}
and U ∪V is like C1. Let L be Lipschitz open subset in U ∪V . If x /∈ L, then f |L∈W k,2(L)

because for any p ∈ L there is a neighborhood Op of p in U or V such that f |Op∈W k,2(Op).

Now, if x ∈ L then in this case near x, L is like C2 and covered by two open sets UL ∈
{C2, ..., C6} and VL ∈ {C2, ..., C6} such that f |UL

∈ F̂k(UL) and f |VL∈ F̂k(VL), and by

the discussion of the Case(A), it follows that f |L∈ F̂k(L) = W k,2(L).



CHAPTER 3. SOBOLEV SHEAVES ON THE DEFINABLE SITE 50

Remark 3.4.8. Take k ∈ N. By analyzing each case, we can show that

(1) Let U ∈ XA(R2) such that U is of type C1,...,C6. Then we have

Fk(U) = F̂k(U).

(2) If W ∈ XA(R2) has only cuspidal singularities (singularities in the boundary of W are

Lipschitz or of type C3) then

Fk(W ) = W k,2(W ).

Hence if U, V ∈ XA(R2) such that U , V , U ∩V , and U ∪V have only cuspidal singularities,

then the sequence:

0→W k,2(U ∪ V )→W k,2(U)⊕W k,2(V )→W k,2(U ∩ V )→ 0.

is exact.

(3) For each U ∈ XA(Rn), Fk(U) has a natural Hilbert structure. Take L = (L1, L2, ..., Lm)

an L-regular decomposition of U . Since each open L-regular set in R2 has only cuspidal

singularities, the following map

NL : Fk(U) −→ R f 7→ NL(f) =
∑

dim(Li)=2

‖f|Li
‖Wk,2(Li),

is a well defined Hilbert structure on Fk(U), and independent of L. Moreover if U has only

cuspidal singularities, then this norm coincide with the Sobolev norm ‖ ‖Wk,2(U).

Proof. � (1) We discuss case by case. The cases C1 and C2 are direct consequences of the

fact that any x ∈ ∂U (except for the center of the punctured disk) has a Lipschitz boundary

in U . The case C6 follows from the additive propriety of Fk and the other cases. So we

prove C3 and C4 (C5 is the same as C4):

� C3 : In this case U = R(r, α, β) is a cusp between α and β. If f ∈ Fk(U) then

any x ∈ U has rx > 0 such that f |Ur(x)∈ F̂k(Ur(x)) = W k,2(Ur(x)) because locally

in the boundary U is only of type C2 and C3, hence by a partition of unity argument

f ∈ W k,2(U) = F̂k(U). Now if f ∈ F̂k(U) = W k,2(U), then clearly f ∈ Fk(U),

because W k,2 is always a subspace of Fk.

� C4 : In this case there exist two definable C1-curves γ1, γ2 : [0, a[−→ R2 such that

γ1(0) = γ2(0) = p0, Angl(γ′1(0), γ′2(0)) = 2π, and

U = R(r, γ1, γ2).

Take γ3, γ4 : [0, a[−→ R2 such that γ3(0) = γ4(0) = p0 ∈ R2, Angl(γ′1(0), γ′3(0)) > 0,

and Angl(γ′4(0), γ′2(0)) > 0. So
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F̂k(U) = {f ∈ D′(U) : f|R(r,γ1,γ4) ∈W k,2(R(r, γ1, γ4)) and f|R(r,γ3,γ2) ∈
W k,2(R(r, γ3, γ2))}.

Let f ∈ F̂k(U) and x ∈ ∂U , then for r > 0 big enough we have that Ur(x) = U and

f | Ur(x) ∈ F̂k(Ur(x)), and so f ∈ Fk(U). Reciprocally, take f ∈ Fk(U). For p0 we

can find r′ > 0 such that U ′r(p0) = R(r′, γ1, γ2) and f | U ′r(p0) ∈ F̂k(U ′r(p0)) , and by

definition

F̂k(U ′r(p0)) = {f ∈ D′(U) : f|R(r′,γ1,γ4) ∈W k,2(R(r′, γ1, γ4)) and f|R(r′,γ3,γ2) ∈
W k,2(R(r′, γ3, γ2))}.....(?)

But we have also U is lipschitz near each point x ∈ ∂U \ {p0}, so this implies that f is

Sobolev near each of these points. So this together with (?) implies that f|R(r,γ1,γ4) ∈
W k,2(R(r, γ1, γ4)) and f|R(r,γ3,γ2) ∈W k,2(R(r, γ3, γ2)), and therefore f ∈ F̂k(U).

� (2) If W ∈ XA(R2) has only cuspidal singularities, then for any x ∈ W there is

rx > 0 such that Wrx(x) is either Lipschitz or a standard cusp, and so F̂k(Wrx(x)) =

W k,2(Wrx(x)). If we take a partition of unity (φx)x∈W of the covering (Wrx(x))x∈W , then

clearly

f =
∑

x φxf |Wrx (x)∈W k,2(W ).

And the exactness on cuspidal domains follows immediately.

� (3) Obvious from L-regular decomposition and the (2) in the remark.

Notation: For k ∈ N and U ∈ XA(R2) with only cuspidal singularities, we denote by

EU an extension operator

EU : W k,2(U) −→W k,2(R2)

f 7→ EU (f) with (EU (f))|U = f .

3.5 Cohomology of the sheaf Fk.

For the computation we need the notion of a good direction.

Good directions: Let A ⊂ Rn be a definable subset and λ ∈ Sn−1. We say that λ is

a good direction for A if there is ε > 0 such that for any x ∈ Areg we have

d(λ, TxA
reg) > ε.

Given λ ∈ Sn−1. We denote by πλ : Rn −→ Nλ =< λ >⊥ the orthogonal projection,

and by xλ the coordinate of x along < λ >.

Let A ⊂ Rn and A′ ⊂ Nλ definable sets, f : A′ −→ R a definable function. We say that A

is the graph of the function f for λ if

A = {x ∈ Rn : πλ(x) ∈ A′ and xλ = f(πλ(x))}.
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Note that λ ∈ Sn−1 is a good direction for A if and only if A is the union of graphs of

Lipschitz definable functions over some subsets of Nλ. One can see immediately that the

sphere Sn has a no good direction, we need to decompose it into finitely many pieces such

that each one has a one good direction (this can be proven using the regular projection

theorem), but we have the beautiful theorem of G.Valette [31] which states that after a

bi-Lipschitz deformation of the ambient space, we have always one good direction:

Theorem 3.5.1. Let A ⊂ Rn. There is a definable bi-Lipschitz h : Rn −→ Rn such that

h(A) has one good direction λ ∈ Sn−1.

Definition 3.5.2. Take U ∈ XA(R2) and U = (Ui)i∈I a cover of U in the definable site

XA(R2). An adapted cover of U is a definable cover V = {Vj}j∈J of R2 such that the

following properties are satisfied:

(1) V is compatible with U , that is each element in U is a finite union of elements in V.

(2) Every finite intersection of elements in V is either empty or a connected domain with

only cuspidal singularities, and intersection of more than three elements is always empty.

(3) There are m ∈ N, r > 0, and (kl, pl) ∈ N2 for each l ∈ {0, ...,m} such that V = {Vj}j∈J
can be rearranged as follows

V = {Ol,p : l ∈ {0, 1, ...,m+ 1} and p ∈ {0, ..., pl}}
∪ {Ôl,p : l ∈ {0, 1, ...,m+ 1} and p ∈ {0, ..., pl − 1}}
∪ {Vl,k : l ∈ {0, 1, ...,m} and k ∈ {0, ..., kl + 1}}
∪ {B(al,k, r) : ak,l ∈ R2, l ∈ {0, 1, ...,m} and k ∈ {0, ..., kl}}

(4) • For each l ∈ {1, ...,m} and p ∈ {0, ..., pl} there is a unique (L(l, p), R(l, p)) ∈ N2

such that the only possible non-Lipschitz singularities of Ol,p and Ôl,p (only the case

of p < pl) are al−1,L(l,p) and al,R(l,p).

• For each p ∈ {0, ..., p0} there is a unique R(0, p) ∈ N such that the only possible

non-Lipschitz singularities of O0,p and Ô0,p (only the case of p < pl) is al,R(0,p).

• For each p ∈ {0, ..., pm+1} there is a unique L(m + 1, p) ∈ N such that the only

possible non-Lipschitz singularities of Om+1,p and Ôm+1,p (only the case of p < pl) is

al,L(m+1,p).

(5) The only non empty intersections of two open sets in V are the open sets Ol,p∩Ôl,p, Ôl,p∩
Ol,p+1, Ol,p ∩Vl,R(l,p), Ol,p ∩Vl−1,L(l,p), B(al,k, r)∩Vl,k, B(al,k, r)∩Vl,k+1, B(al−1,L(l,p), r)∩
Ôl,p, B(al,R(l,p), r) ∩ Ôl,p, B(al−1,L(l,p), r) ∩Ol,p, and B(al,R(l,p), r) ∩Ol,p.

(6) The only non empty intersections of three open sets in V are the open sets Ol,p ∩
Vl,R(l,p) ∩ B(al,R(l,p), r), Ol,p ∩ Vl−1,L(l,p) ∩ B(al−1,L(l,p), r), Ôl,p ∩ Vl,R(l,p) ∩ B(al,R(l,p), r),

Ôl,p ∩ Vl−1,L(l,p) ∩ B(al−1,L(l,p), r), Ol,p ∩ Ôl,p ∩ B(al,R(l,p), r), Ol,p ∩ Ôl,p ∩ B(al−1,L(l,p), r),

Ol,p+1 ∩ Ôl,p ∩B(al,R(l,p+1), r), and Ol,p+1 ∩ Ôl,p ∩B(al−1,L(l,p+1), r).

This definition is motivated by the construction in Figure 3.2 and explained in detail

in the proof of Proposition 3.5.3. These covers will be essential in the computation of the

cohomology of Sobolev sheaves (see Theorem 3.5.5).
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Čech cohomology: Recall that for a given sheaf F on a topological space M and a

covering U = (Ui)i∈I with I an ordered set, we have the Čech complex C?U (M,F) defined

by:

C0
U (M,F)

d0−→ C1
U (M,F)

d1−→ C2
U (M,F)....,

such that

CmU (M,F) =
⊕

J=(i0<i1<...<im)

F(UJ)

and

(dmα)UJ
:= (dmα)J={i0<...<im} =

∑
j=0,...,m

(−1)j(αJ\ij )|UJ
.

Clearly if V is a refinement of U then there is a canonical morphism C?U (M,F) −→
C?V(M,F). So the Čech cohomology of degree j of M with respect to F is defined to be the

colimite:

Hj(M,F) = lim
U
Hj(C?U (M,F)).

It’s well know that this cohomology coincide with the cohomology of the sheaf F on

paracompact spaces, and so on definable sets. We prove in the following Proposition that

any cover in the site XA(R2) has an adapted cover and so we can use only adapted covers

to compute the cohomology of Fk.

Proposition 3.5.3. Take U ∈ XA(R2) and U = (Ui)i∈I ⊂ XA(R2) a cover of U . Then

there is an adapted cover V of U .

Proof. Take U = (Ui)i∈I a definable cover of U , with I = {1, ...,m}. It’s obvious that it is

enough to find such a cover after a bi-Lipschitz definable homeomorphism h : R2 −→ R2.

So by Theorem 3.5.1 we can assume that
⋃
i ∂(Ui) is included in a finite union of graphs of

definable Lipschitz functions ξj : R −→ R. We are going to construct an adapted cover V
(see Figure 3.2).

Take

n = Max{](π−1(x) ∩ (
⋃
j

Γξj )) : x ∈ R} < +∞.

Take C = {] −∞, a0[, {a0}, ]a0, a1[, ..., ]am−1, am[, {am}, ]am,+∞[} a cell decomposition of

R compatible with the collection of sets

Ak = {x ∈ R : ](π−1(x) ∩ (
⋃
j Γξj )) = k} for k ∈ {1, ..., n}.

For l ∈ {0, ...,m}, we have

π−1(al) ∩ (
⋃
j

Γξj ) = {al,0, al,1, ..., al,kl}.

We denote a−1 := −∞ and am+1 := +∞. For l ∈ {−1, 0, ...,m} there are Lipschitz definable

functions

φl,0 < ... < φl,pl :]al, al+1[→ R
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such that π−1 (π(
⋃
i ∂(Ui))∩]al, al+1[) ∩ (

⋃
j Γξj ) =

⋃
p Γφl,p . Now for each l ∈ {0, 1, ...,m}

and p ∈ {0, ..., pl} there are definable Lipschitz functions φ−l,p < φ+
l,p :]al, al+1[ 7→ R, such

that we have

φ−l,0 < φl,0 < φ+
l,0 < φ−l,1 < φl,1 < φ+

l,pl
...... < φ+

l,pl
,

lim
t→al

φ−l,p = lim
t→al

φ+
l,p = lim

t→al
φl,p,

and

lim
t→al+1

φ−l,p = lim
t→al+1

φ+
l,p = lim

t→al+1

φl,p.

Denote by al,−1 := −∞ and al,kl+1 := +∞. For each l ∈ {0, ...,m} and k ∈ {−1, ..., lk}
there are Lipschitz functions (with respect to the direction {(0, 1)}) ϕ−l,k < al < ϕ+

l,k :

]al,k, al,k+1[→ R such that the graphs of these functions do not intersect the graphs of the

functions φsl,p (for any l, p, and s ∈ {0,−,+} with φ0
l,p := φl,p), and

lim
t→al,k

ϕsl,k = al = lim
t→al,k+1

ϕsl,k.

For each (l, k) such that al,k,∈ U , there is rl,k > 0 such that B(al,k, rl,k) ⊂ Ui for all Ui
that contain al,k. Take r < minl,k(rl,k) such that ∂B(al,k, r) is transverse to all the graphs

oh the functions φsl,p and ϕsl,k (here also ϕ0
l,k := al,k), with

B(al′,k′ , r) ∩B(al,k, r) = ∅ if (l, k) 6= (l′, k′).

Take the collection of open definable sets

V = {Γ(ϕ−l,k, ϕ
+
l,k),Γ(φ−l,p, φ

+
l,p),Γ(φl,p, φl,p+1), B(al,k, r) }l,k,p.

Then clearly the collection V is an adapted cover of U .

Figure 3.2 represents an example of an adapted cover V following the notation in the

proof of Proposition 3.5.3.
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Figure 3.2: The cover V.

Remark 3.5.4.(1) The sheaf Fk : XA(R2) −→ C−vector spaces is not acyclic for k > 1.

In this case we have an inclusion W k,2(R2) ⊂ C0(R2). Take the punctured disk W =

B(0, 1) \ {0} = U ∪ V , with:

U = {(x, y) ∈W : y > x or y < −x} and V = {(x, y) ∈W : y > −x or y < x}.

And U ∩ V = O1 tO2 with O1 ∩O2 = {0} such that:

O1 = {(x, y) ∈W : y >| x |} and O2 = {(x, y) ∈W : y < − | x |}.

If H1(W,Fs) = 0, then by the long Mayer-Vietoris theorem, the sequence

0 7→ Fk(W ) 7→W k,2(U)⊕W k,2(V ) 7→W k,2(O1)⊕W k,2(O2) 7→ 0

is exact. But this is not possible because for (f ≡ 1, g ≡ 0) ∈ W k,2(O1)⊕W k,2(O2) there

is no continuous functions (u, v) ∈W k,2(U)⊕W k,2(V ) such that:

(u− v) |O1= 1 and (u− v) |O2= 0.

Hence H1(W,Fk) 6= 0.

(2) In Theorem 3.5.5 we will compute the cohomology of Fk. The proof of Theorem 3.5.5

will be based on the following observations: from the construction of adapted covers we
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Figure 3.3: The curves γi around x0.

Figure 3.4: The curves γ−i and γ+
i .

can deduce that Hj(·,Fk) = 0 for j > 2. For the first cohomology groups of F the only

obstruction for H1(U,Fk) to vanish is the existence of punctured disk in U . Indeed if we

take U with no punctured disk singularity then locally gluing cocycles from C1
U (U,Fk) to

cochains in C0
U (U,Fk) is summarized in the following simple example: take x0 ∈ ∂U and

γ0, ..., γ4 = γ0 : [0, a[→ U (see Figure 3.3) with γ0(0) = ... = γ4(0) = x0 and γ−i < γ+
i :

[0, a[→ R2 (see Figure 3.4), then locally we choose two situations (in fact they are the only

situations that will show up locally in the proof of Theorem 3.5.5):

� Situation 1: we assume that x0 ∈ U . In this situation for some 0 < r < r′, we

assume that (see Figure 3.4)

U =
⋃
i

R(r′, γi, γi+1)
⋃
i

R(r′, γ−i , γ
+
i )
⋃
B(x0, r).

For each i we have functions fi,+ ∈ W k,2(R(r′, γiγ
+
i )), f−,i ∈ W k,2(R(r′, γ−i γi)), gi ∈

W k,2(R(r, γi, γi+1)), and hi ∈W k,2(B(r, γ−i , γ
+
i )) such that
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Figure 3.5: The covering of U in Situation 1.

(fi,+)|R(r,γiγ
+
i ) = (gi)|R(r,γiγ

+
i ),

(f−,i)|R(r,γ−i γi)
= (gi−1)|R(r,γ−i γi)

,

(hi)|R(r,γiγ
+
i ) = (gi)|R(r,γiγ

+
i ), and

(hi)|R(r,γ−i γi)
= (gi−1)|R(r,γ−i γi)

.

We want to glue these functions to functions inW k,2(R(r′, γi, γi+1)), W k,2(R(r′, γ−i , γ
+
i )),

and W k,2(B(x0, r)). Take (φ′, φ) a partition of unity associated to the covering (C =

B(x0, r
′) \B(x0, r), B( r+r

′

2 , x0)) (see Figure 3.5). Define u ∈W k,2(B(x0, r)) by taking

just the values of g′is and h′is. On each R(r′, γ−i , γ
+
i ) we choose the zero functions.

We take smooth compactly supported functions Fi : R2 → [0, 1] such that Fi = 1 on a

neighborhood of R(r′, γ−i , γ
+
i )∩C and Fi = 0 on the other sets of type R(r′, γ−j , γ

+
j )∩C.

So in each W k,2(R(r′, γi, γi+1)) we define vi by

vi :=
(
φ′(FiER(r′,γi,γ

+
i )(fi,+) + Fi+1ER(r′,γ−i+1,γi+1)(fi+1,−)) + φ(EB(x0,r)(u))

)
|R(r′,γi,γi+1)

.

Then clearly the functions u, 0 and vi glue the functions fi,+, f−,i, gi and hi.

� Situation 2: we assume that x0 /∈ U . In this situation (and with the same notation

as in the first case) we assume that (see Figure 3.6)

U = R(r′, γ0, γ1)
⋃
R(r′, γ−1 , γ

+
1 )
⋃
R(r′, γ1, γ2)

⋃
R(r′, γ−2 , γ

+
2 )
⋃
R(r′, γ2, γ3),

with a given functions fi,+ ∈ W k,2(R(r′, γi, γ
+
i )) and f−,i ∈ W k,2(R(r′, γ−i , γi)). To

glue this functions to functions it is enough to take the functions

v0 := 0 ∈W k,2(R(r′, γ0, γ1)),

u1 :=
(
ER(r′,γ−1 ,γ1)(f−,1)

)
|R(r′,γ−1 ,γ

+
1 )
∈W k,2(R(r′, γ−1 , γ

+
1 )),

v1 :=
(
ER(r′,γ−1 ,γ

+
1 )(f1,+) + ER(r′,γ−1 ,γ

+
1 )(u1)

)
|R(r′,γ1,γ2)

∈W k,2(R(r′, γ1, γ2)),

u2 :=
(
ER(r′,γ−2 ,γ2)(f−,2) + ER(r′,γ1,γ2)(v1)

)
|R(r′,γ−2 ,γ

+
2 )
∈W k,2(R(r′, γ−2 , γ

+
2 )),

v2 :=
(
ER(r′,γ2,γ

+
2 )(f2,+) + ER(r′,γ−2 ,γ

+
2 )(u2)

)
|R(r′,γ2,γ3)

∈W k,2(R(r′, γ2, γ3)).
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Figure 3.6: The covering of U in Situation 2.

Theorem 3.5.5. Take U ∈ XA(R2) and F a Sobolev sheaf on the definable site XA(R2)

(that is F = Fs for some s > 0). Then for any j > 1 we have

Hj(U,F) = 0.

And if U has no singularities of type C1. Then for any j ∈ N

Hj(U,F) =

{
F(U) if j = 0

{0} if j > 1.

Proof. By the definition of the Čech cohomology, it is enough to compute the Čech cohomol-

ogy on an adapted cover. So take V an adapted cover of {U} as given by Proposition 3.5.3

and take W the cover of U defined by

W = {O ∈ V : O ⊂ U}.

Then we have the Čech complex

C0
W(U,F)

d0→ C1
W(U,F)

d1→ C2
W(U,F)→ 0.

For j > 2 we have CjW(U,F) = 0 , because the intersection of four elements in W is always

empty. Take ω ∈ C2
U (U,F). So we can write ω as follows

ω =
∑

W∈W2

ω(W ),

where for O ∈ W2 we define

(ω(W ))O =

{
(ω)W if O = W

0 if O 6= W.

To show that ω = 0 in H2(U,F) it is enough to find for each W ∈ W2 an element α(W ) ∈
C1
W(U,F) such that d(α(W )) = ω(W ). For each ak,l ∈ R2 we take a smooth function

Fk,l ∈ C∞c (R2) such that Fk,l = 1 on B(ak,l, r) and Fk,l = 0 on each other B(ak′,l′ , r). Take
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W ∈ W2. Then W = B(al,k, r)∩ Y , where Y is one of the cases in (5) of Proposition 3.5.3.

For any O ∈ W2 we define

(α(W )O =

{
(
∑

k,l Fk,lEW ((ω)W ))|Y if O = Y

0 if not.

So clearly we have

d(α(W )) = ω(W ),

and so H2(U,F) = 0.

Now assume that U has no punctured disk singularity and let’s show that H1(U,F) = 0.

Take α ∈ C1
W(U,F) such that d(α) = 0, so we need to find u ∈ C0

W(U,F) such that d(u) = α.

For O ∈ W, we define u ∈ C0
W(U,F) by induction on l and p (see (3) of Proposition 3.5.3):

� O = O0,0: in this case we define uO = 0 ∈W s,2(O).

� O = Ô0,p: Assuming that we have constructed uO0,p , we define uO ∈W s,2(O) by

uO =
(
EO0,p(uO0,p) + E

O0,p∩Ô0,p
(α

O0,p∩Ô0,p
)
)
|O
.

� O = O0,p+1: Assuming that we have constructed u
Ô0,p

, we define uO ∈W s,2(O) by

uO =
(
E
Ô0,p

(u
Ô0,p

) + E
Ô0,p∩O0,p+1

(α
Ô0,p∩O0,p+1

)
)
|O
.

This was induction on p with fixing l = 0. Now assume that for l fixed we have constructed

uOl,p
and u

Ôl,p
for each p. If O = Vl,k ∈ W, then by (4) of Proposition 3.5.3 there is a

unique p such that

Ol,p ∩ Vl,k 6= ∅.

In this case we define uO by

uO =
(
EOl,p

(uOl,p
) + EOl,p∩Vl,k(αOl,p∩Vl,k)

)
|O .

To finish we need to construct u on each O = Ol+1,p and O = Ôl+1,p for each p. We discuss

the following cases

� O = Ol+1,0: Assume that there is a unique k such that O ∩ Vl,k 6= ∅ (if not we define uO
to be 0), so we define uO by

uO =
(
EVl,k(uVl,k) + EO∩Vl,k(αO∩Vl,k)

)
|O .

� O = Ôl+1,p: Assume that we’ve constructed uOl+1,p
. We define uO by

uO :=
(
EOl+1,p

(uOl+1,p
) + E

Ôl+1,p∩Ol+1,p
(α

Ôl+1,p∩Ol+1,p
)
)
|O
.

� O = Ol+1,p+1): we break it into two cases
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� Case(1): For any k we have Vl+1,k ∩O = ∅. We define uO by

uO :=
(
E
Ôl+1,p

(u
Ôl+1,p

) + E
Ôl+1,p∩Ol+1,p+1

(α
Ôl+1,p∩Ol+1,p+1

)
)
|O
.

� Case(2): There exists k such that

Vl+1,k ∩O 6= ∅.

In this case B(al+1,k, r) ∈ W (because otherwise al+1,k will be a punctured disk singu-

larity for U), and we choose uB(al+1,k,r) to take the values of α. Take r′ > r such that

B(al+1,k, r
′)∩B(al+1,k+1, r

′) = ∅ and (f, g) a partition of unity associated to the cover

(B(al+1,k, r
′),R2 \B(al+1,k, r)). We take also h, h′ ∈ C∞(R2) such that

h|Vl+1,k∩R2\B(al+1,k,r)) = 0 and h|Ôl+1,p∩R2\B(al+1,k,r))
= 1

h′|Vl+1,k∩R2\B(al+1,k,r))
= 1 and h′

|Ôl+1,p∩R2\B(al+1,k,r))
= 0.

So in this case we define uO by

uO := h
(
fEB(al+1,k,r)(uB(al+1,k,r)) + gE

Ôl+1,p
(u
Ôl+1,p

)
)
|O

+

h′
(
fEB(al+1,k,r)(uB(al+1,k,r)) + gEVl+1,k

(uVl+1,k
)
)
|O
.

And in this case for any O such that al+1,k ∈ O we need to modify the definition of uO
by (note here u′O the old definition given in the previous stages of the induction)

uO :=
(
fEB(al+1,k,r)(uB(al+1,k,r)) + gEO(u′O)

)
|O
.

Finally by definition of u we have d(u) = α.

3.6 (W 1,2,W 0,2)-double extension is a sufficient condition for

the sheafification of W s,2.

In this section, for U, V ∈ XA(Rn) we give a categorical proof of Lemma 3.4.2, and we

discuss the case where U ∩V is not Lipschitz. The only assumption we require here is that

U , V , and U ∪ V are Lipschitz. We use the fact that the sequences

0→W 0,2(U ∪ V )→W 0,2(U)⊕W 0,2(V )→W 0,2(U ∩ V )→ 0

and

0→W 1,2(U ∪ V )→W 1,2(U)⊕W 1,2(V )→W 1,2(U ∩ V )→ 0

are exact.

We assume that we have the following double extension:

Assumption: There exist a linear continuous operator
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T : W 0,2(U ∩ V ) −→W 0,2(Rn),

such that T induces a linear continous map from W 1,2(U ∩ V ) to W 1,2(Rn).

Remark 3.6.1. Note that this assumption holds if U ∩ V is Lipschitz, due to the Stein

extension Theorem.

Note that here W 0,2 = L2, and we need only sobolev spaces with regularity s ∈ (0, 1).

We will passe to our exact sequence for s ∈ (0, 1) by a linear combination of the last two,

this make us expect it to be exact. For that, we will use the notion of exact category (see

[5]), it is a categories that is not abelian, but has a structure that allow us to do homological

algebra.

Let C be an additive category. A pair of composable morphisms

X Y Z
f g

is said to be a KC-pair (Kernel-Cokernel pair) if f is the kernel of g and g is the Cokernel

of f . Fix E a class of KC-pairs. An admissible monomorphism (with respect to E) is a

morphism f such that there is a morphism g with (f, g) ∈ E . Admissible epimorphisms

are defined dually.

Definition 3.6.2. An exact structure is a couple (C, E) where C is an additive cate-

gory and E is a class of KC-pairs, closed under isomorphisms and satisfies the following

proprieties:

(E0) For any X ∈ Obj(C), IdX is an admissible monomorphism.

(E0)c The dual statement of (E0).

(E1) The composition of admissible monomorphisms is an admissible monomorphism.

(E1)c The dual statement of (E1).

(E2) If f : X → Y is an admissible monomorphism and t : X → T a morphism, then the

pushout

X Y

T S

f

t sY

sT

exists and sT is an admissible monomorphism.

(E2)c The dual statement of (E2).

If (C, E) is an exact structure, a morphism f : X −→ Y is said to be E-strict if it can

be decomposed into
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X Y

Z

f

e m

where e : X −→ Z is an admissible epimorphism (with respect to E), and m : Z −→ Y is

an admissible monomorphism (with respect to E).

Now fix C an additive category. It is well known (see [5]) that the following class of

KC-pairs

E0 = {(f, g) : X Y Z
f g

split}

is an exact structure on C (it is the smallest one on C).

Definition 3.6.3. Let (C, E) be an exact structure, A an abelian category, and F : C −→ A
an additive functor. F is said to be injective if for any pair X Y Z

f g
in

E , the sequence

0 F (X) F (Y ) F (Z)
F (f) F (g)

is exact in A.

The following result is well known in the theory of exact categories:

Proposition 3.6.4. F is injective if and only if it preserve the Kernel of every E-strict

morphism.

Proof. See [5].

We will construct the category C to serve our case, and the category A will be just the

category of C-vector spaces. Let’s recall the concept of Interpolation:

Definition 3.6.5. A good pair of Banach spaces (or GB-pair) is a pair (X,Y ) of Banach

spaces such that X ⊂ Y with continuous inclusion, that is there is C > 0 such that for any

x ∈ X we have

‖x‖Y 6 C‖x‖X .

We recall the interpolation K-method. So fix (X,Y ) a GB-pair and t > 0, and define

the K-norm on Y by

u 7→ K(t, u) = inf{‖x‖X + t‖y‖Y : u = x+ y, x ∈ X, y ∈ Y }.

For s ∈]0, 1[, we define the interpolation space [X,Y ]s by

[X,Y ]s = {u ∈ Y :

∫ +∞

0

(
t−sK(t, u)

)2 dt
t
< +∞}.

it’s a Banach space with the norm

‖ u ‖[X,Y ]s=

(∫ +∞

0

(
t−sK(t, u)

)2 dt
t

) 1
2

.

Recall the following theorem of interpolation spaces:
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Theorem 3.6.6. Let (X,Y ) and (X ′, Y ′) be two GB-pairs and

L : Y −→ Y ′

a continuous linear map such that L induces a continuous linear map from X to X ′. Then,

for any s ∈]0, 1[, L induced a linear continuous map from [X,Y ]s to [X ′, Y ′]s.

Proof. See [13].

Let A be the category of C−vector spaces and C be the category where the object are

GB-pairs, and for two ((X,Y ), (X ′, Y ′)) ∈ (Obj(C))2 we define the morphisms:

HomC((X,Y ), (X ′, Y ′)) = {L ∈ L(Y, Y ′) : L |X∈ L(X,X ′) }.

Clearly, C is an additive category. We consider the exact structure E0 on C of splitting

KC-pairs. For any s ∈]0, 1[ we define the functor Fs : C −→ A by

Fs((X,Y )) = [X,Y ]s and for f ∈ HomC((X,Y ), (X ′, Y ′))

Fs(f) = f |[X,Y ]s .

By Theorem 3.6.6 , Fs is well defined additive functor.

Lemma 3.6.7. For (X,Y ), (X ′, Y ′) ∈ Ob(C) and for s ∈ [0, 1], there is a natural isomor-

phism :

[X ⊕X ′, Y ⊕ Y ′]s ' [X,Y ]s ⊕ [X ′, Y ′]s.

Proof. Take the projections

P : Y ⊕ Y ′ −→ Y , and

P ′ : Y ⊕ Y ′ −→ Y ′.

Since P |X⊕X′∈ L(X ⊕ X ′, X) and P ′ |X⊕X′∈ L(X ⊕ X ′, X ′), by Theorem 3.6.6 this

induces a continuous linear map

(P, P ′) : [X ⊕X ′, Y ⊕ Y ′]s −→ [X,Y ]s ⊕ [X ′, Y ′]s,

(u) 7→ (P (u), P ′(u)).

The same way applying Theorem 3.6.6 on the injections

I : Y −→ Y ⊕ Y ′ and I ′ : Y ′ −→ Y ⊕ Y ′,

We get a continuous linear map

(I, I ′) : [X,Y ]s ⊕ [X ′, Y ′]s −→ [X ⊕X ′, Y ⊕ Y ′]s,
(z, z′) 7→ z ⊕ z′.

It’s clear that (I, I ′) ◦ (P, P ′) = Id and (P, P ′) ◦ (I, I ′) = Id.

Lemma 3.6.8. The functor Fs : C −→ A is injective with respect to the exact structure

(C, E0).
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Proof. By Proposition 3.6.4, it’s enough to prove that Fs preserve the Kernel of every E0-

strict morphism. Take f : (X,Y ) −→ (X ′, Y ′) a E0-strict morphism. Then there exists

an admissible epimorphism e : (X,Y ) −→ (Z,W ) and an admissible monomorphism m :

(Z,W ) −→ (X ′, Y ′) such that we have a decomposition

(X,Y ) (X ′, Y ′)

(Z,W )

f

e m

By Remark 3.28 in [5], if kf : Kf −→ (X,Y ) is the Kernel of f , then (kf , e) ∈ E0. Easy

computation show that the kernel of f is the morphism

kf : Kf = (X ∩Ker(f),Ker(f)) −→ (X,Y ).

u −→ kf (u) = u.

Here Ker(f) is given the norm of Y , and X ∩Ker(f) is given the norm

‖u‖X∩Ker(f) = max{‖u‖X , ‖u‖Ker(f)}.

By Lemma3.8 in [5], there exist a morphism P : (X,Y ) −→ Kf such that P ◦ kf = IdKf
,

and this means that (X ∩Ker(f),Ker(f)) is a complemented sub-couple of (X,Y ), hence

by Theorem.1 in section 1.17.1 of [26], we have

[X ∩Ker(f),Ker(f)]s = Ker(f) ∩ [X,Y ]s = Ker(Fs(f)).

Now we have the KC-pair in the category C

(W 1,2(U ∪ V ), L2(U ∪ V ))→ (W 1,2(U)⊕W 1,2(V ), L2(U)⊕ L2(V ))→
(W 1,2(U ∩ V ), L2(U ∩ V )).

And by the assumption of the existence of (W 1,2,W 0,2)-double extension, this sequence

split, so it is in the structure E0. Hence by Lemma 3.6.8 if we apply the functor F1−s (for

any s ∈]0, 1[) we get an exact sequence. Therefore, by (3.1.4) we get the exact sequence

0→W s,2(U∪V )→ [W 1,2(U)⊕W s,2(V ), L2(U)⊕L2(V )]1−s → [W s,2(U∩V ), L2(U∩V )]1−s.

By Lemma 3.6.7 and (3.1.4) we can write it the following way

0→W s,2(U ∪ V )→W s,2(U)⊕W s,2(V )→ [W 1,2(U ∩ V ), L2(U ∩ V )]1−s.

Hence we have the exactness of the sequence

0→W s,2(U ∪ V )→W s,2(U)⊕W s,2(V )→W s,2(U ∩ V )→ 0

�

Remark 3.6.9. So the answer to the exactness of the sequence

0→W s,2(U ∪ V )→W s,2(U)⊕W s,2(V )→W s,2(U ∩ V )→ 0
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is important, since a positive answer implies the possibility of sheafifying Sobolev

spaces in the usual sense, and a negative answer will implies that there exist non degree-

independent extension operator from W i,2(Ω) to W i,2(Rn) (for i ∈ {[s], [s] + 1}) when Ω is

a cuspidal domain.

Remark 3.6.10. It may be helpful to create a bigger exact structure E on the category C
of GB-pairs so that the KC-pair

(W 1,2(U ∪ V ), L2(U ∪ V )) 7→ (W 1,2(U)⊕W 1,2(V ), L2(U)⊕ L2(V )) 7→
(W 1,2(U ∩ V ), L2(U ∩ V )).............(?)

is in E . For example we can show that the maximal class of all the KC-pair is exact on

C (this is not true in general (see [5])), but the problem is that making the class E bigger

makes also the class of E-strict morphisms bigger, for example in the case of taking E the

maximal class, a morphism f : (X,Y ) −→ (X ′, Y ′) is E-strict if and only if f(Y ) is closed

in Y ′, f(X) is closed X ′, f is open into f(Y ), and f |X is open into X ′. But to the moment

there is no result where it’s proven that the interpolation is compatible with the Kernel of

this kind of morphisms. There’s in [14] and [7] some sufficient conditions on the morphism

to have a Kernel which is compatible with the interpolation, but It’s not clear how it can be

connected with our situation. So maybe one could create an exact structure on the category

of GB-pairs C that contains the KC-pair (?) and such that the class of strict morphisms

satisfies the conditions given in [14] and [7] .
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